Parse your CSV or XLSX files to create a database. This script allows you create seperate relational tables. You can create ID's for your columns.
For example, you have a Students table:
| Student_ID | Student_Name | City |
|---|---|---|
| 11 | John | London |
| 12 | Alice | Los Angles |
| 13 | Jessy | London |
| 14 | Jeff | London |
| 15 | Samuel | Washington |
To create an relational database, you want to create a new City table:
| City_ID | City |
|---|---|
| 1 | London |
| 2 | Los Angles |
| 3 | Washington |
Also, script creates a new Students table:
| Student_ID | Student_Name | City |
|---|---|---|
| 11 | John | 1 |
| 12 | Alice | 2 |
| 13 | Jessy | 1 |
| 14 | Jeff | 1 |
| 15 | Samuel | 3 |
You can use the script to achieve this.
usage: parse_excel.py [-h] [-f FILE] [-cN COLUMN_NAME] [-o OUTPUT] [-t FILE_TYPE] XLSX and CSV parser to create a database. optional arguments: -h, --help show this help message and exit -f FILE, --file FILE Input file -cN COLUMN_NAME, --column_name COLUMN_NAME Name of the column that want to replace with IDs. -o OUTPUT, --output OUTPUT Output CSV file name. -t FILE_TYPE, --file_type FILE_TYPE Type of the input file. Available: {CSV, XLSX} python3 parse_excel.py -f students_all.xlsx -cN City -o city.csv -t xlsx This command will create:
- City.csv file which holds City_ID and City columns.
- city.csv file which converted City column values to their IDs.
- city.csv.xlsx file which converted City column values to their IDs.
python3 v2_parsePerson2Drug.py excel_file This command will create a new excel file. This excel file contains Personality_IDs for each column except Personality_ID column. Let assume that you have a table:
| Personality_ID | Opt1 | Opt2 |
|---|---|---|
| 11 | Y | Y |
| 12 | Y | |
| 13 | Y |
Script reates a new table like that:
| Personality_ID | Drug_ID |
|---|---|
| 11 | 1 |
| 11 | 2 |
| 12 | 1 |
| 13 | 2 |