Skip to content
Open
Show file tree
Hide file tree
Changes from 8 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
05f3491
API/BUG: freq retention in value_counts
sanjanam1998 Oct 1, 2025
163c0f3
adding whats new
sanjanam1998 Oct 1, 2025
efbb2ce
Merge branch 'main' into main
sanjanam1998 Oct 6, 2025
449313e
Merge branch 'pandas-dev:main' into main
sanjanam1998 Oct 7, 2025
a946317
Merge branch 'pandas-dev:main' into main
sanjanam1998 Oct 15, 2025
74ad212
preserving freq without patching
sanjanam1998 Oct 15, 2025
9b3eeeb
Merge branch 'main' into main
sanjanam1998 Oct 15, 2025
6a1c63d
Merge branch 'main' into main
sanjanam1998 Oct 16, 2025
61a8b67
Merge branch 'pandas-dev:main' into main
sanjanam1998 Oct 17, 2025
b6d277c
Merge branch 'main' into main
sanjanam1998 Oct 17, 2025
c8131c7
Merge branch 'pandas-dev:main' into main
sanjanam1998 Oct 18, 2025
d8acdff
git fix
sanjanam1998 Oct 18, 2025
5331158
Merge branch 'main' into main
sanjanam1998 Oct 18, 2025
0890621
Merge branch 'main' into main
sanjanam1998 Oct 20, 2025
79a82d5
Merge branch 'pandas-dev:main' into main
sanjanam1998 Oct 21, 2025
b643a7c
test changes
sanjanam1998 Oct 22, 2025
660da5b
Merge branch 'main' into main
sanjanam1998 Oct 22, 2025
977d887
Merge branch 'main' into main
sanjanam1998 Oct 22, 2025
7198d97
Update pandas/core/algorithms.py
sanjanam1998 Oct 23, 2025
6d0133e
Merge branch 'main' into main
sanjanam1998 Oct 23, 2025
5c36d37
Merge branch 'main' into main
sanjanam1998 Oct 24, 2025
409f8bb
Merge branch 'pandas-dev:main' into main
sanjanam1998 Oct 28, 2025
85630e8
test optimize
sanjanam1998 Oct 28, 2025
ffad503
none typing
sanjanam1998 Oct 29, 2025
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -972,6 +972,7 @@ Datetimelike
- Bug in comparison between objects with pyarrow date dtype and ``timestamp[pyarrow]`` or ``np.datetime64`` dtype failing to consider these as non-comparable (:issue:`62157`)
- Bug in constructing arrays with :class:`ArrowDtype` with ``timestamp`` type incorrectly allowing ``Decimal("NaN")`` (:issue:`61773`)
- Bug in constructing arrays with a timezone-aware :class:`ArrowDtype` from timezone-naive datetime objects incorrectly treating those as UTC times instead of wall times like :class:`DatetimeTZDtype` (:issue:`61775`)
- Bug in retaining frequency in :meth:`value_counts` specifically for :meth:`DatetimeIndex` and :meth:`TimedeltaIndex` (:issue:`33830`)
- Bug in setting scalar values with mismatched resolution into arrays with non-nanosecond ``datetime64``, ``timedelta64`` or :class:`DatetimeTZDtype` incorrectly truncating those scalars (:issue:`56410`)


Expand Down
29 changes: 29 additions & 0 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -867,6 +867,26 @@ def value_counts_internal(
Series,
)

def _preserve_freq(original_values, result_index):
freq = getattr(original_values, "freq", None)

if (
freq is not None
and type(original_values) is type(result_index)
and len(result_index) == len(original_values)
and result_index.equals(original_values)
):
try:
# Rebuild index with freq using the same constructor
return type(result_index)(
result_index._data, freq=freq, name=result_index.name
)
except (TypeError, ValueError):
# If reconstruction fails, return original index
pass

return result_index

index_name = getattr(values, "name", None)
name = "proportion" if normalize else "count"

Expand Down Expand Up @@ -929,6 +949,15 @@ def value_counts_internal(
# Starting in 3.0, we no longer perform dtype inference on the
# Index object we construct here, xref GH#56161
idx = Index(keys, dtype=keys.dtype, name=index_name)

if (
bins is None
and not sort
and hasattr(values, "freq")
and values.freq is not None
):
idx = _preserve_freq(values, idx)

result = Series(counts, index=idx, name=name, copy=False)

if sort:
Expand Down
150 changes: 150 additions & 0 deletions pandas/tests/base/test_value_counts.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,3 +339,153 @@ def test_value_counts_object_inference_deprecated():
exp = dti.value_counts()
exp.index = exp.index.astype(object)
tm.assert_series_equal(res, exp)


def _vc_make_index(kind: str, periods=5, freq="D"):
if kind == "dt":
return pd.date_range("2016-01-01", periods=periods, freq=freq)
if kind == "td":
return pd.timedelta_range(Timedelta(0), periods=periods, freq=freq)
raise ValueError("kind must be 'dt' or 'td'")


@pytest.mark.parametrize(
"kind,freq,normalize",
[
("dt", "D", False),
("dt", "D", True),
("td", "D", False),
("td", "D", True),
("td", Timedelta(hours=1), False),
("td", Timedelta(hours=1), True),
],
)
def test_value_counts_freq_preserved_datetimelike_no_sort(kind, freq, normalize):
idx = _vc_make_index(kind, periods=5, freq=freq)
vc = idx.value_counts(sort=False, normalize=normalize)
assert vc.index.freq == idx.freq
if normalize:
assert np.isclose(vc.values, 1 / len(idx)).all()


@pytest.mark.parametrize(
"kind,freq",
[
("dt", "D"),
("td", "D"),
("td", Timedelta(hours=1)),
],
)
def test_value_counts_freq_drops_datetimelike_when_sorted(kind, freq):
idx = _vc_make_index(kind, periods=5, freq=freq)
vc = idx.value_counts() # default sort=True (reorders)
assert vc.index.freq is None


@pytest.mark.parametrize(
"kind,freq",
[
("dt", "D"),
("td", "D"),
("td", Timedelta(hours=1)),
],
)
def test_value_counts_freq_drops_datetimelike_with_duplicates(kind, freq):
base = _vc_make_index(kind, periods=5, freq=freq)
obj = base.insert(1, base[1]) # duplicate one label
vc = obj.value_counts(sort=False)
assert vc.index.freq is None


@pytest.mark.parametrize(
"kind,freq",
[
("dt", "D"),
("td", "D"),
("td", Timedelta(hours=1)),
],
)
def test_value_counts_freq_drops_datetimelike_with_gap(kind, freq):
base = _vc_make_index(kind, periods=5, freq=freq)
obj = base.delete(2) # remove one step to break contiguity
vc = obj.value_counts(sort=False)
assert vc.index.freq is None


@pytest.mark.parametrize(
"kind,freq,dropna,expect_hasnans",
[
("dt", "D", False, True), # keep NaT
("dt", "D", True, False), # drop NaT
("td", "D", False, True),
("td", "D", True, False),
("td", Timedelta(hours=1), False, True),
("td", Timedelta(hours=1), True, False),
],
)
def test_value_counts_freq_drops_datetimelike_with_nat(
kind, freq, dropna, expect_hasnans
):
base = _vc_make_index(kind, periods=3, freq=freq)
obj = base.insert(1, pd.NaT)
vc = obj.value_counts(dropna=dropna, sort=False)
assert vc.index.freq is None
assert vc.index.hasnans is expect_hasnans


@pytest.mark.parametrize(
"freq,start,periods,sort",
[
("D", "2016-01-01", 5, False),
("D", "2016-01-01", 5, True),
("M", "2016-01", 6, False), # MonthEnd
("M", "2016-01", 6, True),
("Q-DEC", "2016Q1", 4, False), # QuarterEnd (Dec anchored)
("Q-DEC", "2016Q1", 4, True),
("Y-DEC", "2014", 3, False), # YearEnd (Dec anchored)
("Y-DEC", "2014", 3, True),
],
)
def test_value_counts_period_freq_preserved_sort_and_nosort(freq, start, periods, sort):
pi = pd.period_range(start=start, periods=periods, freq=freq)
vc = pi.value_counts(sort=sort)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq


def test_value_counts_period_freq_preserved_with_duplicates():
pi = pd.period_range("2016-01", periods=5, freq="M")
obj = pi.insert(1, pi[1]) # duplicate one label
vc = obj.value_counts(sort=False)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq


def test_value_counts_period_freq_preserved_with_gap():
pi = pd.period_range("2016-01", periods=5, freq="M")
obj = pi.delete(2) # remove one element
vc = obj.value_counts(sort=False)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq


def test_value_counts_period_freq_preserved_with_normalize():
pi = pd.period_range("2016-01", periods=4, freq="M")
vc = pi.value_counts(normalize=True, sort=False)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq
assert np.isclose(vc.values, 1 / len(pi)).all()


def test_value_counts_period_freq_preserved_with_nat_dropna_true():
pi = pd.period_range("2016-01", periods=5, freq="M")
obj = pi.insert(1, pd.NaT)
vc = obj.value_counts(dropna=True, sort=False)
assert not vc.index.hasnans
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq
Loading