Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.2.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ Fixed regressions
- Fixed regression in :meth:`.GroupBy.sem` where the presence of non-numeric columns would cause an error instead of being dropped (:issue:`38774`)
- Fixed regression in :func:`read_excel` with non-rawbyte file handles (:issue:`38788`)
- Bug in :meth:`read_csv` with ``float_precision="high"`` caused segfault or wrong parsing of long exponent strings. This resulted in a regression in some cases as the default for ``float_precision`` was changed in pandas 1.2.0 (:issue:`38753`)
- Fixed regression in :meth:`DataFrameGroupBy.diff` raising for ``int8`` and ``int16`` columns (:issue:`39050`)
- Fixed regression in :meth:`Rolling.skew` and :meth:`Rolling.kurt` modifying the object inplace (:issue:`38908`)
- Fixed regression in :meth:`read_csv` and other read functions were the encoding error policy (``errors``) did not default to ``"replace"`` when no encoding was specified (:issue:`38989`)

Expand Down
8 changes: 7 additions & 1 deletion pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1981,7 +1981,13 @@ def diff(arr, n: int, axis: int = 0, stacklevel=3):

elif is_integer_dtype(dtype):
# We have to cast in order to be able to hold np.nan
dtype = np.float64

# int8, int16 are incompatible with float64,
# see https://github.com/cython/cython/issues/2646
if arr.dtype.name in ["int8", "int16"]:
dtype = np.float32
else:
dtype = np.float64

orig_ndim = arr.ndim
if orig_ndim == 1:
Expand Down
58 changes: 0 additions & 58 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1697,64 +1697,6 @@ def test_sort(x):
g.apply(test_sort)


def test_group_shift_with_null_key():
# This test is designed to replicate the segfault in issue #13813.
n_rows = 1200

# Generate a moderately large dataframe with occasional missing
# values in column `B`, and then group by [`A`, `B`]. This should
# force `-1` in `labels` array of `g.grouper.group_info` exactly
# at those places, where the group-by key is partially missing.
df = DataFrame(
[(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)],
dtype=float,
columns=["A", "B", "Z"],
index=None,
)
g = df.groupby(["A", "B"])

expected = DataFrame(
[(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)],
dtype=float,
columns=["Z"],
index=None,
)
result = g.shift(-1)

tm.assert_frame_equal(result, expected)


def test_group_shift_with_fill_value():
# GH #24128
n_rows = 24
df = DataFrame(
[(i % 12, i % 3, i) for i in range(n_rows)],
dtype=float,
columns=["A", "B", "Z"],
index=None,
)
g = df.groupby(["A", "B"])

expected = DataFrame(
[(i + 12 if i < n_rows - 12 else 0) for i in range(n_rows)],
dtype=float,
columns=["Z"],
index=None,
)
result = g.shift(-1, fill_value=0)[["Z"]]

tm.assert_frame_equal(result, expected)


def test_group_shift_lose_timezone():
# GH 30134
now_dt = Timestamp.utcnow()
df = DataFrame({"a": [1, 1], "date": now_dt})
result = df.groupby("a").shift(0).iloc[0]
expected = Series({"date": now_dt}, name=result.name)
tm.assert_series_equal(result, expected)


def test_pivot_table_values_key_error():
# This test is designed to replicate the error in issue #14938
df = DataFrame(
Expand Down
106 changes: 106 additions & 0 deletions pandas/tests/groupby/test_groupby_shift_diff.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
import numpy as np
import pytest

from pandas import DataFrame, NaT, Series, Timedelta, Timestamp
import pandas._testing as tm


def test_group_shift_with_null_key():
# This test is designed to replicate the segfault in issue #13813.
n_rows = 1200

# Generate a moderately large dataframe with occasional missing
# values in column `B`, and then group by [`A`, `B`]. This should
# force `-1` in `labels` array of `g.grouper.group_info` exactly
# at those places, where the group-by key is partially missing.
df = DataFrame(
[(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)],
dtype=float,
columns=["A", "B", "Z"],
index=None,
)
g = df.groupby(["A", "B"])

expected = DataFrame(
[(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)],
dtype=float,
columns=["Z"],
index=None,
)
result = g.shift(-1)

tm.assert_frame_equal(result, expected)


def test_group_shift_with_fill_value():
# GH #24128
n_rows = 24
df = DataFrame(
[(i % 12, i % 3, i) for i in range(n_rows)],
dtype=float,
columns=["A", "B", "Z"],
index=None,
)
g = df.groupby(["A", "B"])

expected = DataFrame(
[(i + 12 if i < n_rows - 12 else 0) for i in range(n_rows)],
dtype=float,
columns=["Z"],
index=None,
)
result = g.shift(-1, fill_value=0)[["Z"]]

tm.assert_frame_equal(result, expected)


def test_group_shift_lose_timezone():
# GH 30134
now_dt = Timestamp.utcnow()
df = DataFrame({"a": [1, 1], "date": now_dt})
result = df.groupby("a").shift(0).iloc[0]
expected = Series({"date": now_dt}, name=result.name)
tm.assert_series_equal(result, expected)


def test_group_diff_real(any_real_dtype):
df = DataFrame({"a": [1, 2, 3, 3, 2], "b": [1, 2, 3, 4, 5]}, dtype=any_real_dtype)
result = df.groupby("a")["b"].diff()
exp_dtype = "float"
if any_real_dtype in ["int8", "int16", "float32"]:
exp_dtype = "float32"
expected = Series([np.nan, np.nan, np.nan, 1.0, 3.0], dtype=exp_dtype, name="b")
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
"data",
[
[
Timestamp("2013-01-01"),
Timestamp("2013-01-02"),
Timestamp("2013-01-03"),
],
[Timedelta("5 days"), Timedelta("6 days"), Timedelta("7 days")],
],
)
def test_group_diff_datetimelike(data):
df = DataFrame({"a": [1, 2, 2], "b": data})
result = df.groupby("a")["b"].diff()
expected = Series([NaT, NaT, Timedelta("1 days")], name="b")
tm.assert_series_equal(result, expected)


def test_group_diff_bool():
df = DataFrame({"a": [1, 2, 3, 3, 2], "b": [True, True, False, False, True]})
result = df.groupby("a")["b"].diff()
expected = Series([np.nan, np.nan, np.nan, False, False], name="b")
tm.assert_series_equal(result, expected)


def test_group_diff_object_raises(object_dtype):
df = DataFrame(
{"a": ["foo", "bar", "bar"], "b": ["baz", "foo", "foo"]}, dtype=object_dtype
)
with pytest.raises(TypeError, match=r"unsupported operand type\(s\) for -"):
df.groupby("a")["b"].diff()
7 changes: 7 additions & 0 deletions pandas/tests/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -2409,3 +2409,10 @@ def test_diff_ea_axis(self):
msg = "cannot diff DatetimeArray on axis=1"
with pytest.raises(ValueError, match=msg):
algos.diff(dta, 1, axis=1)

@pytest.mark.parametrize("dtype", ["int8", "int16"])
def test_diff_low_precision_int(self, dtype):
arr = np.array([0, 1, 1, 0, 0], dtype=dtype)
result = algos.diff(arr, 1)
expected = np.array([np.nan, 1, 0, -1, 0], dtype="float32")
tm.assert_numpy_array_equal(result, expected)