Skip to content
Prev Previous commit
Fix
  • Loading branch information
dsaxton committed Oct 30, 2020
commit d40e4f37da734ee56e1aeb89caf292fb323832cc
60 changes: 30 additions & 30 deletions pandas/tests/arrays/test_timedeltas.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def test_from_sequence_dtype(self):

@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
def test_astype_int(self, dtype):
arr = TimedeltaArray._from_sequence([pd.Timedelta("1H"), pd.Timedelta("2H")])
arr = TimedeltaArray._from_sequence([Timedelta("1H"), Timedelta("2H")])
result = arr.astype(dtype)

if np.dtype(dtype).kind == "u":
Expand All @@ -95,15 +95,15 @@ def test_astype_int(self, dtype):

def test_setitem_clears_freq(self):
a = TimedeltaArray(pd.timedelta_range("1H", periods=2, freq="H"))
a[0] = pd.Timedelta("1H")
a[0] = Timedelta("1H")
assert a.freq is None

@pytest.mark.parametrize(
"obj",
[
pd.Timedelta(seconds=1),
pd.Timedelta(seconds=1).to_timedelta64(),
pd.Timedelta(seconds=1).to_pytimedelta(),
Timedelta(seconds=1),
Timedelta(seconds=1).to_timedelta64(),
Timedelta(seconds=1).to_pytimedelta(),
],
)
def test_setitem_objects(self, obj):
Expand All @@ -112,7 +112,7 @@ def test_setitem_objects(self, obj):
arr = TimedeltaArray(tdi, freq=tdi.freq)

arr[0] = obj
assert arr[0] == pd.Timedelta(seconds=1)
assert arr[0] == Timedelta(seconds=1)

@pytest.mark.parametrize(
"other",
Expand Down Expand Up @@ -206,11 +206,11 @@ def test_min_max(self):
arr = TimedeltaArray._from_sequence(["3H", "3H", "NaT", "2H", "5H", "4H"])

result = arr.min()
expected = pd.Timedelta("2H")
expected = Timedelta("2H")
assert result == expected

result = arr.max()
expected = pd.Timedelta("5H")
expected = Timedelta("5H")
assert result == expected

result = arr.min(skipna=False)
Expand All @@ -224,12 +224,12 @@ def test_sum(self):
arr = tdi.array

result = arr.sum(skipna=True)
expected = pd.Timedelta(hours=17)
assert isinstance(result, pd.Timedelta)
expected = Timedelta(hours=17)
assert isinstance(result, Timedelta)
assert result == expected

result = tdi.sum(skipna=True)
assert isinstance(result, pd.Timedelta)
assert isinstance(result, Timedelta)
assert result == expected

result = arr.sum(skipna=False)
Expand All @@ -245,11 +245,11 @@ def test_sum(self):
assert result is pd.NaT

result = arr.sum(min_count=1)
assert isinstance(result, pd.Timedelta)
assert isinstance(result, Timedelta)
assert result == expected

result = tdi.sum(min_count=1)
assert isinstance(result, pd.Timedelta)
assert isinstance(result, Timedelta)
assert result == expected

def test_npsum(self):
Expand All @@ -258,12 +258,12 @@ def test_npsum(self):
arr = tdi.array

result = np.sum(tdi)
expected = pd.Timedelta(hours=17)
assert isinstance(result, pd.Timedelta)
expected = Timedelta(hours=17)
assert isinstance(result, Timedelta)
assert result == expected

result = np.sum(arr)
assert isinstance(result, pd.Timedelta)
assert isinstance(result, Timedelta)
assert result == expected

def test_sum_2d_skipna_false(self):
Expand All @@ -276,15 +276,15 @@ def test_sum_2d_skipna_false(self):
assert result is pd.NaT

result = tda.sum(axis=0, skipna=False)
expected = pd.TimedeltaIndex([pd.Timedelta(seconds=12), pd.NaT])._values
expected = pd.TimedeltaIndex([Timedelta(seconds=12), pd.NaT])._values
tm.assert_timedelta_array_equal(result, expected)

result = tda.sum(axis=1, skipna=False)
expected = pd.TimedeltaIndex(
[
pd.Timedelta(seconds=1),
pd.Timedelta(seconds=5),
pd.Timedelta(seconds=9),
Timedelta(seconds=1),
Timedelta(seconds=5),
Timedelta(seconds=9),
pd.NaT,
]
)._values
Expand All @@ -294,7 +294,7 @@ def test_sum_2d_skipna_false(self):
@pytest.mark.parametrize(
"add",
[
pd.Timedelta(0),
Timedelta(0),
pd.Timestamp.now(),
pd.Timestamp.now("UTC"),
pd.Timestamp.now("Asia/Tokyo"),
Expand All @@ -305,17 +305,17 @@ def test_std(self, add):
arr = tdi.array

result = arr.std(skipna=True)
expected = pd.Timedelta(hours=2)
assert isinstance(result, pd.Timedelta)
expected = Timedelta(hours=2)
assert isinstance(result, Timedelta)
assert result == expected

result = tdi.std(skipna=True)
assert isinstance(result, pd.Timedelta)
assert isinstance(result, Timedelta)
assert result == expected

if getattr(arr, "tz", None) is None:
result = nanops.nanstd(np.asarray(arr), skipna=True)
assert isinstance(result, pd.Timedelta)
assert isinstance(result, Timedelta)
assert result == expected

result = arr.std(skipna=False)
Expand All @@ -333,12 +333,12 @@ def test_median(self):
arr = tdi.array

result = arr.median(skipna=True)
expected = pd.Timedelta(hours=2)
assert isinstance(result, pd.Timedelta)
expected = Timedelta(hours=2)
assert isinstance(result, Timedelta)
assert result == expected

result = tdi.median(skipna=True)
assert isinstance(result, pd.Timedelta)
assert isinstance(result, Timedelta)
assert result == expected

result = arr.median(skipna=False)
Expand All @@ -352,7 +352,7 @@ def test_mean(self):
arr = tdi._data

# manually verified result
expected = pd.Timedelta(arr.dropna()._ndarray.mean())
expected = Timedelta(arr.dropna()._ndarray.mean())

result = arr.mean()
assert result == expected
Expand All @@ -374,7 +374,7 @@ def test_mean_2d(self):
tm.assert_timedelta_array_equal(result, expected)

result = tda.mean(axis=1)
expected = tda[:, 0] + pd.Timedelta(hours=12)
expected = tda[:, 0] + Timedelta(hours=12)
tm.assert_timedelta_array_equal(result, expected)

result = tda.mean(axis=None)
Expand Down
64 changes: 32 additions & 32 deletions pandas/tests/series/indexing/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,10 +133,10 @@ def test_getitem_fancy(string_series, object_series):
def test_type_promotion():
# GH12599
s = Series(dtype=object)
s["a"] = pd.Timestamp("2016-01-01")
s["a"] = Timestamp("2016-01-01")
s["b"] = 3.0
s["c"] = "foo"
expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"])
expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"])
tm.assert_series_equal(s, expected)


Expand Down Expand Up @@ -181,13 +181,13 @@ def test_series_box_timestamp():
rng = pd.date_range("20090415", "20090519", freq="B")
ser = Series(rng)

assert isinstance(ser[5], pd.Timestamp)
assert isinstance(ser[5], Timestamp)

rng = pd.date_range("20090415", "20090519", freq="B")
ser = Series(rng, index=rng)
assert isinstance(ser[5], pd.Timestamp)
assert isinstance(ser[5], Timestamp)

assert isinstance(ser.iat[5], pd.Timestamp)
assert isinstance(ser.iat[5], Timestamp)


def test_series_box_timedelta():
Expand Down Expand Up @@ -354,37 +354,37 @@ def test_setitem_with_tz(tz):

# scalar
s = orig.copy()
s[1] = pd.Timestamp("2011-01-01", tz=tz)
s[1] = Timestamp("2011-01-01", tz=tz)
exp = Series(
[
pd.Timestamp("2016-01-01 00:00", tz=tz),
pd.Timestamp("2011-01-01 00:00", tz=tz),
pd.Timestamp("2016-01-01 02:00", tz=tz),
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2016-01-01 02:00", tz=tz),
]
)
tm.assert_series_equal(s, exp)

s = orig.copy()
s.loc[1] = pd.Timestamp("2011-01-01", tz=tz)
s.loc[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(s, exp)

s = orig.copy()
s.iloc[1] = pd.Timestamp("2011-01-01", tz=tz)
s.iloc[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(s, exp)

# vector
vals = Series(
[pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2012-01-01", tz=tz)],
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"

s[[1, 2]] = vals
exp = Series(
[
pd.Timestamp("2016-01-01 00:00", tz=tz),
pd.Timestamp("2011-01-01 00:00", tz=tz),
pd.Timestamp("2012-01-01 00:00", tz=tz),
Timestamp("2016-01-01 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
tm.assert_series_equal(s, exp)
Expand All @@ -406,37 +406,37 @@ def test_setitem_with_tz_dst():

# scalar
s = orig.copy()
s[1] = pd.Timestamp("2011-01-01", tz=tz)
s[1] = Timestamp("2011-01-01", tz=tz)
exp = Series(
[
pd.Timestamp("2016-11-06 00:00-04:00", tz=tz),
pd.Timestamp("2011-01-01 00:00-05:00", tz=tz),
pd.Timestamp("2016-11-06 01:00-05:00", tz=tz),
Timestamp("2016-11-06 00:00-04:00", tz=tz),
Timestamp("2011-01-01 00:00-05:00", tz=tz),
Timestamp("2016-11-06 01:00-05:00", tz=tz),
]
)
tm.assert_series_equal(s, exp)

s = orig.copy()
s.loc[1] = pd.Timestamp("2011-01-01", tz=tz)
s.loc[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(s, exp)

s = orig.copy()
s.iloc[1] = pd.Timestamp("2011-01-01", tz=tz)
s.iloc[1] = Timestamp("2011-01-01", tz=tz)
tm.assert_series_equal(s, exp)

# vector
vals = Series(
[pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2012-01-01", tz=tz)],
[Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)],
index=[1, 2],
)
assert vals.dtype == f"datetime64[ns, {tz}]"

s[[1, 2]] = vals
exp = Series(
[
pd.Timestamp("2016-11-06 00:00", tz=tz),
pd.Timestamp("2011-01-01 00:00", tz=tz),
pd.Timestamp("2012-01-01 00:00", tz=tz),
Timestamp("2016-11-06 00:00", tz=tz),
Timestamp("2011-01-01 00:00", tz=tz),
Timestamp("2012-01-01 00:00", tz=tz),
]
)
tm.assert_series_equal(s, exp)
Expand Down Expand Up @@ -568,7 +568,7 @@ def test_timedelta_assignment():
s = Series(10 * [np.timedelta64(10, "m")])
s.loc[[1, 2, 3]] = np.timedelta64(20, "m")
expected = Series(10 * [np.timedelta64(10, "m")])
expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, "m"))
expected.loc[[1, 2, 3]] = Timedelta(np.timedelta64(20, "m"))
tm.assert_series_equal(s, expected)


Expand Down Expand Up @@ -637,9 +637,9 @@ def test_td64_series_assign_nat(nat_val, should_cast):
@pytest.mark.parametrize(
"td",
[
pd.Timedelta("9 days"),
pd.Timedelta("9 days").to_timedelta64(),
pd.Timedelta("9 days").to_pytimedelta(),
Timedelta("9 days"),
Timedelta("9 days").to_timedelta64(),
Timedelta("9 days").to_pytimedelta(),
],
)
def test_append_timedelta_does_not_cast(td):
Expand All @@ -649,12 +649,12 @@ def test_append_timedelta_does_not_cast(td):
ser = Series(["x"])
ser["td"] = td
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], pd.Timedelta)
assert isinstance(ser["td"], Timedelta)

ser = Series(["x"])
ser.loc["td"] = pd.Timedelta("9 days")
ser.loc["td"] = Timedelta("9 days")
tm.assert_series_equal(ser, expected)
assert isinstance(ser["td"], pd.Timedelta)
assert isinstance(ser["td"], Timedelta)


def test_underlying_data_conversion():
Expand Down