Skip to content

BUG: StringArray with NA behaves different to numpy object array for elementwise comparisons #62802

@ssche

Description

@ssche

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

This is for pandas '2.1.1', the latest version raises an error instead.

>>> import pandas as pd >>> import numpy >>> str_arr = pd.array(['a', 'b', 'c', 'foo', 'd', 'bar', None], dtype="string") >>> str_arr <StringArray> ['a', 'b', 'c', 'foo', 'd', 'bar', <NA>] Length: 7, dtype: string >>> b2 = np.asarray(str_arr) >>> b2 array(['a', 'b', 'c', 'foo', 'd', 'bar', <NA>], dtype=object) >>> b2 == a_ext <stdin>:1: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison False

I'd like an elementwise comparison and not a scalar return value.

Issue Description

When I use a string array with NA values to perform elementwise comparison, the result is a scalar instead of an elementwise matrix.

Here's how this used to work when I used numpy object dtype:

>>> import numpy as np >>> >>> a = np.asarray(['foo', 'bar', 'baz']) >>> b = np.asarray(['a', 'b', 'c', 'foo', 'd', 'bar', None]) >>> b array(['a', 'b', 'c', 'foo', 'd', 'bar', None], dtype=object) >>> >>> # Find matches of `b` in `a` >>> a_ext = a[:, np.newaxis] >>> b == a_ext array([[False, False, False, True, False, False, False], [False, False, False, False, False, True, False], [False, False, False, False, False, False, False]])

But when I use a pandas string type as a source for b (rather than object dtype), the result is a scalar boolean (in 2.1.1) or a TypeError (in 2.3.3).

>>> import pandas as pd >>> >>> str_arr = pd.array(['a', 'b', 'c', 'foo', 'd', 'bar', None], dtype="string") >>> str_arr <StringArray> ['a', 'b', 'c', 'foo', 'd', 'bar', <NA>] Length: 7, dtype: string >>> b2 = np.asarray(str_arr) >>> b2 array(['a', 'b', 'c', 'foo', 'd', 'bar', <NA>], dtype=object) >>> pd.__version__ '2.1.1' >>> np.__version__ '1.24.3' >>> b2 == a_ext <stdin>:1: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison False or >>> pd.__version__ '2.3.3' >>> np.__version__ '2.3.4' >>> b2 == a_ext Traceback (most recent call last): File "<python-input-8>", line 8, in <module> b2 == a_ext File "pandas/_libs/missing.pyx", line 392, in pandas._libs.missing.NAType.__bool__ TypeError: boolean value of NA is ambiguous

Workaround: replace NA with None in b2:

>>> b2[pd.isnull(b2)] = None >>> b2 == a_ext array([[False, False, False, True, False, False, False], [False, False, False, False, False, True, False], [False, False, False, False, False, False, False]]) 

Expected Behavior

An array is returned.

Installed Versions

pd.show_versions()

INSTALLED VERSIONS

commit : e86ed37
python : 3.11.14.final.0
python-bits : 64
OS : Linux
OS-release : 6.16.12-200.fc42.x86_64
Version : #1 SMP PREEMPT_DYNAMIC Sun Oct 12 16:31:16 UTC 2025
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_AU.UTF-8
LOCALE : en_AU.UTF-8

pandas : 2.1.1
numpy : 1.24.3
pytz : 2020.4
dateutil : 2.8.2
setuptools : 69.2.0
pip : 24.2
Cython : 0.29.34
pytest : 7.3.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 0.9.6
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.9.6
jinja2 : 2.11.2
IPython : None
pandas_datareader : None
bs4 : None
bottleneck : 1.3.5
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : 2.8.4
odfpy : None
openpyxl : 3.1.3
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
sqlalchemy : 1.3.23
tables : 3.8.0
tabulate : None
xarray : None
xlrd : 2.0.1
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugCompatpandas objects compatability with Numpy or Python functionsMissing-datanp.nan, pd.NaT, pd.NA, dropna, isnull, interpolateNeeds TriageIssue that has not been reviewed by a pandas team memberStringsString extension data type and string data

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions