Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Added task 295.
  • Loading branch information
javadev committed Nov 26, 2021
commit 3495328df96fa8243fb29bb58ab0252620a70735
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
package g0201_0300.s0295_find_median_from_data_stream;

import java.util.PriorityQueue;

public class MedianFinder {
// take two queues one is for storing upper half and the other is for lowerhalf
// max stores the lower half
// min heap stores the upper half
PriorityQueue<Integer> maxHeap;
PriorityQueue<Integer> minHeap;

// initialize your data structure here.
public MedianFinder() {
maxHeap = new PriorityQueue<Integer>((a, b) -> (b - a));
minHeap = new PriorityQueue<Integer>();
}

public void addNum(int num) {
if (maxHeap.size() == 0 || maxHeap.peek() > num) {
maxHeap.offer(num);
} else {
minHeap.offer(num);
}
if (Math.abs(maxHeap.size() - minHeap.size()) > 1) {
balance(maxHeap, minHeap);
}
}

public void balance(PriorityQueue<Integer> maxHeap, PriorityQueue<Integer> minHeap) {
PriorityQueue<Integer> large = maxHeap.size() > minHeap.size() ? maxHeap : minHeap;
PriorityQueue<Integer> small = maxHeap.size() > minHeap.size() ? minHeap : maxHeap;
small.offer(large.poll());
}

public double findMedian() {
PriorityQueue<Integer> large = maxHeap.size() > minHeap.size() ? maxHeap : minHeap;
PriorityQueue<Integer> small = maxHeap.size() > minHeap.size() ? minHeap : maxHeap;
if (large.size() == small.size()) {
return (double) (large.peek() + small.peek()) / 2;
} else {
return large.peek();
}
}
}

/*
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
295\. Find Median from Data Stream

Hard

The **median** is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.

* For example, for `arr = [2,3,4]`, the median is `3`.
* For example, for `arr = [2,3]`, the median is `(2 + 3) / 2 = 2.5`.

Implement the MedianFinder class:

* `MedianFinder()` initializes the `MedianFinder` object.
* `void addNum(int num)` adds the integer `num` from the data stream to the data structure.
* `double findMedian()` returns the median of all elements so far. Answers within <code>10<sup>-5</sup></code> of the actual answer will be accepted.

**Example 1:**

**Input**

["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]

**Output:** \[null, null, null, 1.5, null, 2.0\]

**Explanation:**

MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

**Constraints:**

* <code>-10<sup>5</sup> <= num <= 10<sup>5</sup></code>
* There will be at least one element in the data structure before calling `findMedian`.
* At most <code>5 * 10<sup>4</sup></code> calls will be made to `addNum` and `findMedian`.

**Follow up:**

* If all integer numbers from the stream are in the range `[0, 100]`, how would you optimize your solution?
* If `99%` of all integer numbers from the stream are in the range `[0, 100]`, how would you optimize your solution?
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
package g0201_0300.s0295_find_median_from_data_stream;

import static org.hamcrest.CoreMatchers.equalTo;
import static org.hamcrest.MatcherAssert.assertThat;

import org.junit.Test;

public class MedianFinderTest {
@Test
public void medianFinder() {
MedianFinder medianFinder = new MedianFinder();
// arr = [1]
medianFinder.addNum(1);
// arr = [1, 2]
medianFinder.addNum(2);
// return 1.5 (i.e., (1 + 2) / 2)
assertThat(medianFinder.findMedian(), equalTo(1.5));
// arr[1, 2, 3]
medianFinder.addNum(3);
// return 2.0
assertThat(medianFinder.findMedian(), equalTo(2.0));
}
}