Skip to content
forked from guyyariv/DyPE

Official implementation for "DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion".

License

Notifications You must be signed in to change notification settings

anyopensource/DyPE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion

Project Page arXiv

TL;DR

DyPE (Dynamic Position Extrapolation) enables pre-trained diffusion transformers to generate ultra-high-resolution images far beyond their training scale. It dynamically adjusts positional encodings during denoising to match evolving frequency content—achieving faithful 4K × 4K results without retraining or extra sampling cost.

DyPE Results

Installation

Create a conda environment and install dependencies:

conda create -n dype python=3.10 conda activate dype pip install -r requirements.txt

Usage

Generate ultra-high resolution images with DyPE using the run_dype.py script:

python run_dype.py --prompt "Your text prompt here"

Key Arguments:

Argument Default Description
--prompt Dark fantasy scene Text prompt for image generation
--height 4096 Image height in pixels
--width 4096 Image width in pixels
--steps 28 Number of inference steps
--seed 42 Random seed for reproducibility
--method yarn Position encoding method: yarn, ntk, or base
--no_dype False Disable DyPE (enabled by default)

Examples:

# Generate 4K image with default settings (YARN + DyPE) python run_dype.py --prompt "A serene mountain landscape at sunset" # Use NTK method without DyPE python run_dype.py --method ntk --no_dype --prompt "A futuristic city skyline" # Baseline comparison (no position encoding modifications) python run_dype.py --method base

Generated images will be saved to the outputs/ folder (created automatically).

License and Commercial Use

This work is patent pending. For commercial use or licensing inquiries, please contact the authors.

Citation

If you find this useful for your research, please cite the following:

@misc{issachar2025dypedynamicpositionextrapolation, title={DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion}, author={Noam Issachar and Guy Yariv and Sagie Benaim and Yossi Adi and Dani Lischinski and Raanan Fattal}, year={2025}, eprint={2510.20766}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2510.20766}, }

About

Official implementation for "DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%