Skip to content
Merged
Prev Previous commit
Next Next commit
Demo Gradient Boosting
  • Loading branch information
abdoulayegk committed Aug 13, 2020
commit 7d0cbf9d4194a842c18f7c9615cb4c23a783f5a2
70 changes: 70 additions & 0 deletions machine_learning/Gradient_boosting_regressor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
"""Implementation of GradientBoostingRegressor in sklearn using the
boston dataset which is very popular for regression problem to
predict house price.
"""

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split


def main():

# loading the dataset from the sklearn
df = load_boston()
print(df.keys())
# now let construct a data frame
df_boston = pd.DataFrame(df.data, columns=df.feature_names)
# let add the target to the dataframe
df_boston["Price"] = df.target
# print the first five rows using the head function
print(df_boston.head())
# Summary statistics
print(df_boston.describe().T)
# Feature selection

X = df_boston.iloc[:, :-1]
y = df_boston.iloc[:, -1] # target variable
# split the data with 75% train and 25% test sets.
X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=0, test_size=0.25
)

model = GradientBoostingRegressor(
n_estimators=500, max_depth=5, min_samples_split=4, learning_rate=0.01
)
# training the model
model.fit(X_train, y_train)
"""let have a look on the train and test score
to see how good the model fit the data"""
score = model.score(X_train, y_train).round(3)
print("Training score of GradientBoosting is :", score)
print(
"the test score of GradienBoosting is :",
model.score(X_test, y_test).round(3)
)
# Let us evaluation the model by finding the errors
y_pred = model.predict(X_test)

# The mean squared error
print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred))
# Explained variance score: 1 is perfect prediction
print("Test Variance score: %.2f" % r2_score(y_test, y_pred))

# So let's run the model against the test data
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors=(0, 0, 0))
ax.plot([y_test.min(), y_test.max()],
[y_test.min(), y_test.max()], "k--", lw=4)
ax.set_xlabel("Actual")
ax.set_ylabel("Predicted")
ax.set_title("Truth vs Predicted")
# this show function will display the plotting
plt.show()


if __name__ == "__main__":
main()