Skip to content
Next Next commit
Implement Strassen's matrix multiplication algorithm
This file implements Strassen's matrix multiplication algorithm, which is faster than the standard O(n^3) method for large matrices. It includes helper functions for matrix operations and benchmarks the performance of Strassen's algorithm against standard multiplication.
  • Loading branch information
ITZ-NIHALPATEL authored Oct 17, 2025
commit f40df023bc3a5de82c8aaf8ef13c8cda2194d102
252 changes: 252 additions & 0 deletions matrix/strassen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
"""
Implementation of Strassen's matrix multiplication algorithm.
https://en.wikipedia.org/wiki/Strassen_algorithm

This is a divide-and-conquer algorithm that is asymptotically faster
than the standard O(n^3) matrix multiplication for large matrices.

Note: In Python, due to the overhead of recursion and list slicing,
this implementation will be *slower* than the iterative version
for small or medium-sized matrices (like 4x4).
"""

# type Matrix = list[list[int]] # psf/black currently fails on this line
Matrix = list[list[int]]

# --- Test Matrices (reused from other files) ---
matrix_1_to_4 = [
[1, 2],
[3, 4],
]

matrix_5_to_8 = [
[5, 6],
[7, 8],
]

matrix_count_up = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
]

matrix_unordered = [
[5, 8, 1, 2],
[6, 7, 3, 0],
[4, 5, 9, 1],
[2, 6, 10, 14],
]

matrix_non_square = [
[1, 2, 3],
[4, 5, 6],
]


# --- Helper function from matrix_multiplication_recursion.py ---
def is_square(matrix: Matrix) -> bool:
"""
Checks if a matrix is square.
>>> is_square(matrix_1_to_4)
True
>>> is_square(matrix_non_square)
False
"""
len_matrix = len(matrix)
return all(len(row) == len_matrix for row in matrix)


# --- Helper function for benchmarking ---
def matrix_multiply(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
"""
Standard iterative matrix multiplication for comparison.
>>> matrix_multiply(matrix_1_to_4, matrix_5_to_8)
[[19, 22], [43, 50]]
"""
return [
[sum(a * b for a, b in zip(row, col)) for col in zip(*matrix_b)]
for row in matrix_a
]


# --- Helper functions for Strassen's Algorithm ---


def matrix_add(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
"""
Adds two matrices element-wise.
>>> matrix_add(matrix_1_to_4, matrix_5_to_8)
[[6, 8], [10, 12]]
"""
return [
[matrix_a[i][j] + matrix_b[i][j] for j in range(len(matrix_a[0]))]
for i in range(len(matrix_a))
]


def matrix_subtract(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
"""
Subtracts matrix_b from matrix_a element-wise.
>>> matrix_subtract(matrix_5_to_8, matrix_1_to_4)
[[4, 4], [4, 4]]
"""
return [
[matrix_a[i][j] - matrix_b[i][j] for j in range(len(matrix_a[0]))]
for i in range(len(matrix_a))
]


def split_matrix(matrix: Matrix) -> tuple[Matrix, Matrix, Matrix, Matrix]:
"""
Splits a given matrix into four equal quadrants.
>>> a, b, c, d = split_matrix(matrix_count_up)
>>> a
[[1, 2], [5, 6]]
>>> b
[[3, 4], [7, 8]]
>>> c
[[9, 10], [13, 14]]
>>> d
[[11, 12], [15, 16]]
"""
n = len(matrix) // 2
a11 = [row[:n] for row in matrix[:n]]
a12 = [row[n:] for row in matrix[:n]]
a21 = [row[:n] for row in matrix[n:]]
a22 = [row[n:] for row in matrix[n:]]
return a11, a12, a21, a22


def combine_matrices(
c11: Matrix, c12: Matrix, c21: Matrix, c22: Matrix
) -> Matrix:
"""
Combines four quadrants into a single matrix.
>>> a, b, c, d = split_matrix(matrix_count_up)
>>> combine_matrices(a, b, c, d) == matrix_count_up
True
"""
n = len(c11)
result = []
for i in range(n):
result.append(c11[i] + c12[i])
for i in range(n):
result.append(c21[i] + c22[i])
return result


def pad_matrix(matrix: Matrix, target_size: int) -> Matrix:
"""Pads a matrix with zeros to reach the target_size."""
n = len(matrix)
if n == target_size:
return matrix

padded_matrix = [[0] * target_size for _ in range(target_size)]
for i in range(n):
for j in range(len(matrix[i])):
padded_matrix[i][j] = matrix[i][j]
return padded_matrix


def unpad_matrix(matrix: Matrix, original_size: int) -> Matrix:
"""Removes padding to return to the original_size."""
if len(matrix) == original_size:
return matrix
return [row[:original_size] for row in matrix[:original_size]]


# --- Main Strassen Function ---


def strassen(matrix_a: Matrix, matrix_b: Matrix) -> Matrix:
"""
:param matrix_a: A square Matrix.
:param matrix_b: Another square Matrix with the same dimensions as matrix_a.
:return: Result of matrix_a * matrix_b.
:raises ValueError: If the matrices cannot be multiplied.

>>> strassen([], [])
[]
>>> strassen(matrix_1_to_4, matrix_5_to_8)
[[19, 22], [43, 50]]
>>> strassen(matrix_count_up, matrix_unordered)
[[37, 61, 74, 61], [105, 165, 166, 129], [173, 269, 258, 197], [241, 373, 350, 265]]
>>> strassen(matrix_1_to_4, matrix_non_square)
Traceback (most recent call last):
...
ValueError: Matrices must be square and of the same dimensions
>>> strassen(matrix_1_to_4, matrix_count_up)
Traceback (most recent call last):
...
ValueError: Matrices must be square and of the same dimensions
"""
if not matrix_a or not matrix_b:
return []

if not (
len(matrix_a) == len(matrix_b)
and is_square(matrix_a)
and is_square(matrix_b)
):
raise ValueError("Matrices must be square and of the same dimensions")

original_size = len(matrix_a)

# Base case
if original_size == 1:
return [[matrix_a[0][0] * matrix_b[0][0]]]

# Pad matrix to the next power of 2
n = original_size
if n & (n - 1) != 0:
next_power_of_2 = 1 << n.bit_length()
a = pad_matrix(matrix_a, next_power_of_2)
b = pad_matrix(matrix_b, next_power_of_2)
n = next_power_of_2
else:
a = matrix_a
b = matrix_b

# Split matrices into quadrants
a11, a12, a21, a22 = split_matrix(a)
b11, b12, b21, b22 = split_matrix(b)

# Calculate the 7 Strassen products recursively
p1 = strassen(a11, matrix_subtract(b12, b22))
p2 = strassen(matrix_add(a11, a12), b22)
p3 = strassen(matrix_add(a21, a22), b11)
p4 = strassen(a22, matrix_subtract(b21, b11))
p5 = strassen(matrix_add(a11, a22), matrix_add(b11, b22))
p6 = strassen(matrix_subtract(a12, a22), matrix_add(b21, b22))
p7 = strassen(matrix_subtract(a11, a21), matrix_add(b11, b12))

# Calculate result quadrants
c11 = matrix_add(matrix_subtract(matrix_add(p5, p4), p2), p6)
c12 = matrix_add(p1, p2)
c21 = matrix_add(p3, p4)
c22 = matrix_subtract(matrix_subtract(matrix_add(p5, p1), p3), p7)

# Combine result quadrants
result = combine_matrices(c11, c12, c21, c22)

# Unpad the result to match original dimensions
return unpad_matrix(result, original_size)


if __name__ == "__main__":
from doctest import testmod

failure_count, test_count = testmod()
if not failure_count:
print("\nBenchmark (Note: Strassen has high overhead in Python):")
from functools import partial
from timeit import timeit

# Run fewer iterations as Strassen is slower for small matrices in Python
mytimeit = partial(timeit, globals=globals(), number=10_0DENIED)
for func in ("matrix_multiply", "strassen"):
print(
f"{func:>25}(): "
f"{mytimeit(f'{func}(matrix_count_up, matrix_unordered)')}"
)