Note: This repository is still developing.
Chapter 1: Special Continuous Random Variables  
- 1.1. Normal (Gaussian) Distribution
 - 1.2. Chi-square Distribution
 - 1.3. T-student Distribution
 - 1.4. Fisher Distribution
 - 1.5. Continuous Uniform Distribution
 - 1.6. Exponential Distribution
 - 1.7. Gamma Distribution
 - 1.8. Beta Distribution
 - 1.9. Weibull Distribution
 - 1.10. Cauchy Distribution
 - 1.11. Laplace Distribution
 - 1.12. Logistic Distribution
 
Chapter 2: Special Discrete Random Variables  
- 2.1. Bernoulli Distribution
 - 2.2. Binomial Distribution
 - 2.3. Negative Binomial (Pascal) Distribution
 - 2.4. Geometric Distribution
 - 2.5. Poisson Distribution
 - 2.6. Discrete Uniform Distribution
 - 2.7. Hypergeometric Distribution
 
Chapter 3: Confidence Intervals  
- 3.1. Confidence Interval for the Mean of a Normal Population 
- 3.1.1. Known Standard Deviation
 - 3.1.2. Unknown Standard Deviation
 
 - 3.2. Confidence Interval for the Variance of a Normal Population 
- 3.2.1. Unknown Mean of the Population
 - 3.2.2. Known Mean of the Population
 
 - 3.3. Confidence Interval for the Difference in Means of Two Normal Population 
- 3.3.1. Known Variances
 - 3.3.2. Unknown but Equal Variances
 
 - 3.4. Confidence Interval for the Ratio of Variances of Two Normal Populations
 - 3.5. Confidence Interval for the Mean of a Bernoulli Random Variable
 
Chapter 4: Parametric Hypothesis Testing  
- 4.1. Introduction
 - 4.2. Test Concerning the Mean of a Normal Population 
- 4.2.1. Known Standard Deviation
 - 4.2.2. Unknown Standard Deviation
 
 - 4.3. Test Concerning the Equality of Means of Two Normal Populations 
- 4.3.1. Known Variances
 - 4.3.2. Unknown but Equal Variances
 
 - 4.4. Paired t-test
 - 4.5. Test Concerning the Variance of a Normal Population
 - 4.6. Test Concerning the Equality of Variances of Two Normal Populations
 - 4.7. Test Concerning P in Bernoulli Populations
 - 4.8. Test Concerning the Equality of P in Two Bernoulli Populations
 
Chapter 5: Statistical Hypothesis Testing  
- 5.1. Normality Tests 
- 5.1.1. Shapiro-Wilk Test
 - 5.1.2. D’Agostino’s Test
 - 5.1.3. Anderson-Darling Test
 
 - 5.2. Correlation Tests 
- 5.2.1. Pearson’s Correlation Coefficient
 - 5.2.2. Spearman’s Rank Correlation
 - 5.2.3. Kendall’s Rank Correlation
 - 5.2.4. Chi-Squared Test
 
 - 5.3. Stationary Tests 
- 5.3.1. Augmented Dickey-Fuller Unit Root Test
 - 5.3.2. Kwiatkowski-Phillips-Schmidt-Shin Test
 
 - 5.4. Other Tests 
- 5.4.1. Mann-Whitney U-Test
 - 5.4.2. Wilcoxon Signed-Rank Test
 - 5.4.3. Kruskal-Wallis H Test
 - 5.4.4. Friedman Test
 
 
- 6.1. Introduction
 - 6.2. Least Squares Estimators of the Regression Parameters
 - 6.3. Statistical Inferences about the Regression Parameters 
- 6.3.1. Inferences Concerning B 
- 6.3.1.1. Known Variance
 - 6.3.1.2. Unknown Variance
 
 - 6.3.2. Inferences Concerning A 
- 6.3.2.1. Unknown Variance
 
 - 6.3.3. T-tests for Regression Parameters with statsmodels
 - 6.3.4. F-statistic for Overall Significance in Regression
 
 - 6.3.1. Inferences Concerning B 
 - 6.4. Confidence Intervals Concerning Regression Models 
- 6.4.1. Confidence Interval for B 
- 6.4.1.1. Known Variance
 - 6.4.1.2. Unknown Variance
 
 - 6.4.2. Confidence Interval for A 
- 6.4.2.1. Unknown Variance
 
 - 6.4.3. Confidence Interval for A+Bx 
- 6.4.3.1. Unknown Variance
 
 - 6.4.4. Prediction Interval of a Future Response
 
 - 6.4.1. Confidence Interval for B 
 - 6.5. Residuals 
- 6.5.1. Regression Diagnostic
 - 6.5.2. Multicollinearity
 
 
Chapter 7: Analysis of Variance (ANOVA)  
- 7.1. One-Way Analysis of Variance 
- 7.1.1. Equal Sample Sizes
 - 7.1.2. Unequal Sample Sizes
 
 - 7.2. Two-Way Analysis of Variance
 
