Skip to content

Louis-Finegan/Root-Finding-Algorithms-c

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Root Finding Algorithms in the c programming language

Writen in Linux Ubuntu 20.04.2 LTS.

Algorithms

  1. Bisection Method.

  2. False Position (Regula Falsi) Method.

  3. Newton-Raphson Method.

  4. Fixed Point Method.

Example Case:

Let $f(x) = 3x^2 - 2x +6$. The value can $x$ such that $f(x)=0$ was calculated by the above algorithms.

How to use

  1. Run the following command in the terminal:
	./run.sh 
  1. Enter in the required quantities in the different fields until the program finshes.

Results

	STARTING PROGRAM	File Names:	1. bisection-method.c	2. false-position-method.c	3. fixed-point-iteration-method.c	4. newton-raphson-method.c	Were Compiled	Running applications:	---STARTING BISECTION METHOD---	Enter an a: -1	Enter a b: 0	Enter the number of iterations: 100	Bisection Method: Solution is -0.290994	initial interval: [-1.000000, 0.000000]	number of iterations is: 100	---ENDING BISECTION METHOD---	---STARTING FALSE POSITION METHOD---	Enter an a: -1	Enter a b: 0	Enter the number of iterations: 100	False Position Method: Solution is -0.290994	initial interval: [-1.000000, 0.000000] number of iterations is: 100	---ENDING FALSE POSITION METHOD---	---STARTING FIXED POINT ITERATION---	Enter an initial guess: 0	Enter a tolerance: 0.00001	Enter the maximum number of iterations: 1000	Fixed Point Iteration: Solution is -0.290995	---ENDING FIXED POINT ITERATION---	---STARTING NEWTOW RAPHSON METHOD---	Enter an initial guess: 0	Enter the number of iterations: 100	Newton Raphson Method: Solution is -0.290994	number of iterations is: 100	---ENDING NEWTON RAPHSON METHOD---	ENDING PROGRAM