You can ask a Gemini model to analyze video files that you provide either inline (base64-encoded) or via URL. When you use Firebase AI Logic, you can make this request directly from your app.
With this capability, you can do things like:
- Caption and answer questions about videos
- Analyze specific segments of a video using timestamps
- Transcribe video content by processing both the audio track and visual frames
- Describe, segment, and extract information from videos, including both the audio track and visual frames
Jump to code samples Jump to code for streamed responses
| See other guides for additional options for working with video Generate structured output Multi-turn chat |
Before you begin
| Click your Gemini API provider to view provider-specific content and code on this page. |
If you haven't already, complete the getting started guide, which describes how to set up your Firebase project, connect your app to Firebase, add the SDK, initialize the backend service for your chosen Gemini API provider, and create a GenerativeModel instance.
For testing and iterating on your prompts, we recommend using Google AI Studio.
You can use this publicly available file with a MIME type of
video/mp4(view or download file).https://storage.googleapis.com/cloud-samples-data/video/animals.mp4
Generate text from video files (base64-encoded)
| Before trying this sample, complete the Before you begin section of this guide to set up your project and app. In that section, you'll also click a button for your chosen Gemini API provider so that you see provider-specific content on this page. |
You can ask a Gemini model to generate text by prompting with text and video—providing each input file's mimeType and the file itself. Find requirements and recommendations for input files later on this page.
Swift
You can call generateContent() to generate text from multimodal input of text and video files.
import FirebaseAILogic // Initialize the Gemini Developer API backend service let ai = FirebaseAI.firebaseAI(backend: .googleAI()) // Create a `GenerativeModel` instance with a model that supports your use case let model = ai.generativeModel(modelName: "gemini-2.5-flash") // Provide the video as `Data` with the appropriate MIME type. let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4") // Provide a text prompt to include with the video let prompt = "What is in the video?" // To generate text output, call generateContent with the text and video let response = try await model.generateContent(video, prompt) print(response.text ?? "No text in response.") Kotlin
You can call generateContent() to generate text from multimodal input of text and video files.
// Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case val model = Firebase.ai(backend = GenerativeBackend.googleAI()) .generativeModel("gemini-2.5-flash") val contentResolver = applicationContext.contentResolver contentResolver.openInputStream(videoUri).use { stream -> stream?.let { val bytes = stream.readBytes() // Provide a prompt that includes the video specified above and text val prompt = content { inlineData(bytes, "video/mp4") text("What is in the video?") } // To generate text output, call generateContent with the prompt val response = model.generateContent(prompt) Log.d(TAG, response.text ?: "") } } Java
You can call generateContent() to generate text from multimodal input of text and video files.
ListenableFuture. // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()) .generativeModel("gemini-2.5-flash"); // Use the GenerativeModelFutures Java compatibility layer which offers // support for ListenableFuture and Publisher APIs GenerativeModelFutures model = GenerativeModelFutures.from(ai); ContentResolver resolver = getApplicationContext().getContentResolver(); try (InputStream stream = resolver.openInputStream(videoUri)) { File videoFile = new File(new URI(videoUri.toString())); int videoSize = (int) videoFile.length(); byte[] videoBytes = new byte[videoSize]; if (stream != null) { stream.read(videoBytes, 0, videoBytes.length); stream.close(); // Provide a prompt that includes the video specified above and text Content prompt = new Content.Builder() .addInlineData(videoBytes, "video/mp4") .addText("What is in the video?") .build(); // To generate text output, call generateContent with the prompt ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt); Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() { @Override public void onSuccess(GenerateContentResponse result) { String resultText = result.getText(); System.out.println(resultText); } @Override public void onFailure(Throwable t) { t.printStackTrace(); } }, executor); } } catch (IOException e) { e.printStackTrace(); } catch (URISyntaxException e) { e.printStackTrace(); } Web
You can call generateContent() to generate text from multimodal input of text and video files.
import { initializeApp } from "firebase/app"; import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai"; // TODO(developer) Replace the following with your app's Firebase configuration // See: https://firebase.google.com/docs/web/learn-more#config-object const firebaseConfig = { // ... }; // Initialize FirebaseApp const firebaseApp = initializeApp(firebaseConfig); // Initialize the Gemini Developer API backend service const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() }); // Create a `GenerativeModel` instance with a model that supports your use case const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" }); // Converts a File object to a Part object. async function fileToGenerativePart(file) { const base64EncodedDataPromise = new Promise((resolve) => { const reader = new FileReader(); reader.onloadend = () => resolve(reader.result.split(',')[1]); reader.readAsDataURL(file); }); return { inlineData: { data: await base64EncodedDataPromise, mimeType: file.type }, }; } async function run() { // Provide a text prompt to include with the video const prompt = "What do you see?"; const fileInputEl = document.querySelector("input[type=file]"); const videoPart = await fileToGenerativePart(fileInputEl.files[0]); // To generate text output, call generateContent with the text and video const result = await model.generateContent([prompt, videoPart]); const response = result.response; const text = response.text(); console.log(text); } run(); Dart
You can call generateContent() to generate text from multimodal input of text and video files.
import 'package:firebase_ai/firebase_ai.dart'; import 'package:firebase_core/firebase_core.dart'; import 'firebase_options.dart'; // Initialize FirebaseApp await Firebase.initializeApp( options: DefaultFirebaseOptions.currentPlatform, ); // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case final model = FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash'); // Provide a text prompt to include with the video final prompt = TextPart("What's in the video?"); // Prepare video for input final video = await File('video0.mp4').readAsBytes(); // Provide the video as `Data` with the appropriate mimetype final videoPart = InlineDataPart('video/mp4', video); // To generate text output, call generateContent with the text and images final response = await model.generateContent([ Content.multi([prompt, ...videoPart]) ]); print(response.text); Unity
You can call GenerateContentAsync() to generate text from multimodal input of text and video files.
using Firebase; using Firebase.AI; // Initialize the Gemini Developer API backend service var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()); // Create a `GenerativeModel` instance with a model that supports your use case var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash"); // Provide the video as `data` with the appropriate MIME type. var video = ModelContent.InlineData("video/mp4", System.IO.File.ReadAllBytes(System.IO.Path.Combine( UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4"))); // Provide a text prompt to include with the video var prompt = ModelContent.Text("What is in the video?"); // To generate text output, call GenerateContentAsync with the text and video var response = await model.GenerateContentAsync(new [] { video, prompt }); UnityEngine.Debug.Log(response.Text ?? "No text in response."); Learn how to choose a model appropriate for your use case and app.
Stream the response
| Before trying this sample, complete the Before you begin section of this guide to set up your project and app. In that section, you'll also click a button for your chosen Gemini API provider so that you see provider-specific content on this page. |
You can achieve faster interactions by not waiting for the entire result from the model generation, and instead use streaming to handle partial results. To stream the response, call generateContentStream.
Swift
You can call generateContentStream() to stream generated text from multimodal input of text and a single video.
import FirebaseAILogic // Initialize the Gemini Developer API backend service let ai = FirebaseAI.firebaseAI(backend: .googleAI()) // Create a `GenerativeModel` instance with a model that supports your use case let model = ai.generativeModel(modelName: "gemini-2.5-flash") // Provide the video as `Data` with the appropriate MIME type let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4") // Provide a text prompt to include with the video let prompt = "What is in the video?" // To stream generated text output, call generateContentStream with the text and video let contentStream = try model.generateContentStream(video, prompt) for try await chunk in contentStream { if let text = chunk.text { print(text) } } Kotlin
You can call generateContentStream() to stream generated text from multimodal input of text and a single video.
// Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case val model = Firebase.ai(backend = GenerativeBackend.googleAI()) .generativeModel("gemini-2.5-flash") val contentResolver = applicationContext.contentResolver contentResolver.openInputStream(videoUri).use { stream -> stream?.let { val bytes = stream.readBytes() // Provide a prompt that includes the video specified above and text val prompt = content { inlineData(bytes, "video/mp4") text("What is in the video?") } // To stream generated text output, call generateContentStream with the prompt var fullResponse = "" model.generateContentStream(prompt).collect { chunk -> Log.d(TAG, chunk.text ?: "") fullResponse += chunk.text } } } Java
You can call generateContentStream() to stream generated text from multimodal input of text and a single video.
Publisher type from the Reactive Streams library. // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()) .generativeModel("gemini-2.5-flash"); // Use the GenerativeModelFutures Java compatibility layer which offers // support for ListenableFuture and Publisher APIs GenerativeModelFutures model = GenerativeModelFutures.from(ai); ContentResolver resolver = getApplicationContext().getContentResolver(); try (InputStream stream = resolver.openInputStream(videoUri)) { File videoFile = new File(new URI(videoUri.toString())); int videoSize = (int) videoFile.length(); byte[] videoBytes = new byte[videoSize]; if (stream != null) { stream.read(videoBytes, 0, videoBytes.length); stream.close(); // Provide a prompt that includes the video specified above and text Content prompt = new Content.Builder() .addInlineData(videoBytes, "video/mp4") .addText("What is in the video?") .build(); // To stream generated text output, call generateContentStream with the prompt Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(prompt); final String[] fullResponse = {""}; streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() { @Override public void onNext(GenerateContentResponse generateContentResponse) { String chunk = generateContentResponse.getText(); fullResponse[0] += chunk; } @Override public void onComplete() { System.out.println(fullResponse[0]); } @Override public void onError(Throwable t) { t.printStackTrace(); } @Override public void onSubscribe(Subscription s) { } }); } } catch (IOException e) { e.printStackTrace(); } catch (URISyntaxException e) { e.printStackTrace(); } Web
You can call generateContentStream() to stream generated text from multimodal input of text and a single video.
import { initializeApp } from "firebase/app"; import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai"; // TODO(developer) Replace the following with your app's Firebase configuration // See: https://firebase.google.com/docs/web/learn-more#config-object const firebaseConfig = { // ... }; // Initialize FirebaseApp const firebaseApp = initializeApp(firebaseConfig); // Initialize the Gemini Developer API backend service const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() }); // Create a `GenerativeModel` instance with a model that supports your use case const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" }); // Converts a File object to a Part object. async function fileToGenerativePart(file) { const base64EncodedDataPromise = new Promise((resolve) => { const reader = new FileReader(); reader.onloadend = () => resolve(reader.result.split(',')[1]); reader.readAsDataURL(file); }); return { inlineData: { data: await base64EncodedDataPromise, mimeType: file.type }, }; } async function run() { // Provide a text prompt to include with the video const prompt = "What do you see?"; const fileInputEl = document.querySelector("input[type=file]"); const videoPart = await fileToGenerativePart(fileInputEl.files[0]); // To stream generated text output, call generateContentStream with the text and video const result = await model.generateContentStream([prompt, videoPart]); for await (const chunk of result.stream) { const chunkText = chunk.text(); console.log(chunkText); } } run(); Dart
You can call generateContentStream() to stream generated text from multimodal input of text and a single video.
import 'package:firebase_ai/firebase_ai.dart'; import 'package:firebase_core/firebase_core.dart'; import 'firebase_options.dart'; // Initialize FirebaseApp await Firebase.initializeApp( options: DefaultFirebaseOptions.currentPlatform, ); // Initialize the Gemini Developer API backend service // Create a `GenerativeModel` instance with a model that supports your use case final model = FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash'); // Provide a text prompt to include with the video final prompt = TextPart("What's in the video?"); // Prepare video for input final video = await File('video0.mp4').readAsBytes(); // Provide the video as `Data` with the appropriate mimetype final videoPart = InlineDataPart('video/mp4', video); // To stream generated text output, call generateContentStream with the text and image final response = await model.generateContentStream([ Content.multi([prompt,videoPart]) ]); await for (final chunk in response) { print(chunk.text); } Unity
You can call GenerateContentStreamAsync() to stream generated text from multimodal input of text and a single video.
using Firebase; using Firebase.AI; // Initialize the Gemini Developer API backend service var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()); // Create a `GenerativeModel` instance with a model that supports your use case var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash"); // Provide the video as `data` with the appropriate MIME type. var video = ModelContent.InlineData("video/mp4", System.IO.File.ReadAllBytes(System.IO.Path.Combine( UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4"))); // Provide a text prompt to include with the video var prompt = ModelContent.Text("What is in the video?"); // To stream generated text output, call GenerateContentStreamAsync with the text and video var responseStream = model.GenerateContentStreamAsync(new [] { video, prompt }); await foreach (var response in responseStream) { if (!string.IsNullOrWhiteSpace(response.Text)) { UnityEngine.Debug.Log(response.Text); } } Learn how to choose a model appropriate for your use case and app.
Requirements and recommendations for input video files
Note that a file provided as inline data is encoded to base64 in transit, which increases the size of the request. You get an HTTP 413 error if a request is too large.
See "Supported input files and requirements" page to learn detailed information about the following:
- Different options for providing a file in a request (either inline or using the file's URL or URI)
- Requirements and best practices for video files
Supported video MIME types
Gemini multimodal models support the following video MIME types:
- FLV -
video/x-flv - MOV -
video/quicktime - MPEG -
video/mpeg - MPEGPS -
video/mpegps - MPG -
video/mpg - MP4 -
video/mp4 - WEBM -
video/webm - WMV -
video/wmv - 3GPP -
video/3gpp
Limits per request
Maximum files per request: 10 video files
What else can you do?
- Learn how to count tokens before sending long prompts to the model.
- Set up Cloud Storage for Firebase so that you can include large files in your multimodal requests and have a more managed solution for providing files in prompts. Files can include images, PDFs, video, and audio.
- Start thinking about preparing for production (see the production checklist), including:
- Setting up Firebase App Check to protect the Gemini API from abuse by unauthorized clients.
- Integrating Firebase Remote Config to update values in your app (like model name) without releasing a new app version.
Try out other capabilities
- Build multi-turn conversations (chat).
- Generate text from text-only prompts.
- Generate structured output (like JSON) from both text and multimodal prompts.
- Generate images from text prompts (Gemini or Imagen).
- Use tools (like function calling and grounding with Google Search) to connect a Gemini model to other parts of your app and external systems and information.
Learn how to control content generation
- Understand prompt design, including best practices, strategies, and example prompts.
- Configure model parameters like temperature and maximum output tokens (for Gemini) or aspect ratio and person generation (for Imagen).
- Use safety settings to adjust the likelihood of getting responses that may be considered harmful.
Learn more about the supported models
Learn about the models available for various use cases and their quotas and pricing.Give feedback about your experience with Firebase AI Logic