Reference documentation and code samples for the Cloud AutoML V1beta1 API class Google::Cloud::AutoML::V1beta1::ModelExportOutputConfig.
Output configuration for ModelExport Action.
Inherits
- Object
 
Extended By
- Google::Protobuf::MessageExts::ClassMethods
 
Includes
- Google::Protobuf::MessageExts
 
Methods
#gcr_destination
def gcr_destination() -> ::Google::Cloud::AutoML::V1beta1::GcrDestination-  (::Google::Cloud::AutoML::V1beta1::GcrDestination) — The GCR location where model image is to be pushed to. This location may only be set for the following model formats: "docker".
The model image will be created under the given URI.
 
#gcr_destination=
def gcr_destination=(value) -> ::Google::Cloud::AutoML::V1beta1::GcrDestination-  value (::Google::Cloud::AutoML::V1beta1::GcrDestination) — The GCR location where model image is to be pushed to. This location may only be set for the following model formats: "docker".
The model image will be created under the given URI.
 
-  (::Google::Cloud::AutoML::V1beta1::GcrDestination) — The GCR location where model image is to be pushed to. This location may only be set for the following model formats: "docker".
The model image will be created under the given URI.
 
#gcs_destination
def gcs_destination() -> ::Google::Cloud::AutoML::V1beta1::GcsDestination-  (::Google::Cloud::AutoML::V1beta1::GcsDestination) — The Google Cloud Storage location where the model is to be written to. This location may only be set for the following model formats: "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
Under the directory given as the destination a new one with name "model-export-
 
#gcs_destination=
def gcs_destination=(value) -> ::Google::Cloud::AutoML::V1beta1::GcsDestination-  value (::Google::Cloud::AutoML::V1beta1::GcsDestination) — The Google Cloud Storage location where the model is to be written to. This location may only be set for the following model formats: "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
Under the directory given as the destination a new one with name "model-export-
 
-  (::Google::Cloud::AutoML::V1beta1::GcsDestination) — The Google Cloud Storage location where the model is to be written to. This location may only be set for the following model formats: "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
Under the directory given as the destination a new one with name "model-export-
 
#model_format
def model_format() -> ::String-  (::String) — 
The format in which the model must be exported. The available, and default, formats depend on the problem and model type (if given problem and type combination doesn't have a format listed, it means its models are not exportable):
For Image Classification mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", "docker".
For Image Classification mobile-core-ml-low-latency-1, mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: "core_ml" (default).
For Image Object Detection mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite", "tf_saved_model", "tf_js".
For Video Classification cloud, "tf_saved_model".
For Video Object Tracking cloud, "tf_saved_model".
For Video Object Tracking mobile-versatile-1: "tflite", "edgetpu_tflite", "tf_saved_model", "docker".
For Video Object Tracking mobile-coral-versatile-1: "tflite", "edgetpu_tflite", "docker".
For Video Object Tracking mobile-coral-low-latency-1: "tflite", "edgetpu_tflite", "docker".
For Video Object Tracking mobile-jetson-versatile-1: "tf_saved_model", "docker".
For Tables: "docker".
Formats description:
- tflite - Used for Android mobile devices.
 - edgetpu_tflite - Used for Edge TPU devices.
 - tf_saved_model - A tensorflow model in SavedModel format.
 - tf_js - A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript.
 - docker - Used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system. See more at [containers
 
quickstart](https: //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
- core_ml - Used for iOS mobile devices.
 
 
#model_format=
def model_format=(value) -> ::String-  value (::String) — 
The format in which the model must be exported. The available, and default, formats depend on the problem and model type (if given problem and type combination doesn't have a format listed, it means its models are not exportable):
For Image Classification mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", "docker".
For Image Classification mobile-core-ml-low-latency-1, mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: "core_ml" (default).
For Image Object Detection mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite", "tf_saved_model", "tf_js".
For Video Classification cloud, "tf_saved_model".
For Video Object Tracking cloud, "tf_saved_model".
For Video Object Tracking mobile-versatile-1: "tflite", "edgetpu_tflite", "tf_saved_model", "docker".
For Video Object Tracking mobile-coral-versatile-1: "tflite", "edgetpu_tflite", "docker".
For Video Object Tracking mobile-coral-low-latency-1: "tflite", "edgetpu_tflite", "docker".
For Video Object Tracking mobile-jetson-versatile-1: "tf_saved_model", "docker".
For Tables: "docker".
Formats description:
- tflite - Used for Android mobile devices.
 - edgetpu_tflite - Used for Edge TPU devices.
 - tf_saved_model - A tensorflow model in SavedModel format.
 - tf_js - A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript.
 - docker - Used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system. See more at [containers
 
quickstart](https: //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
- core_ml - Used for iOS mobile devices.
 
 
-  (::String) — 
The format in which the model must be exported. The available, and default, formats depend on the problem and model type (if given problem and type combination doesn't have a format listed, it means its models are not exportable):
For Image Classification mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", "docker".
For Image Classification mobile-core-ml-low-latency-1, mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: "core_ml" (default).
For Image Object Detection mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite", "tf_saved_model", "tf_js".
For Video Classification cloud, "tf_saved_model".
For Video Object Tracking cloud, "tf_saved_model".
For Video Object Tracking mobile-versatile-1: "tflite", "edgetpu_tflite", "tf_saved_model", "docker".
For Video Object Tracking mobile-coral-versatile-1: "tflite", "edgetpu_tflite", "docker".
For Video Object Tracking mobile-coral-low-latency-1: "tflite", "edgetpu_tflite", "docker".
For Video Object Tracking mobile-jetson-versatile-1: "tf_saved_model", "docker".
For Tables: "docker".
Formats description:
- tflite - Used for Android mobile devices.
 - edgetpu_tflite - Used for Edge TPU devices.
 - tf_saved_model - A tensorflow model in SavedModel format.
 - tf_js - A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript.
 - docker - Used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system. See more at [containers
 
quickstart](https: //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
- core_ml - Used for iOS mobile devices.
 
 
#params
def params() -> ::Google::Protobuf::Map{::String => ::String}-  (::Google::Protobuf::Map{::String => ::String}) — 
Additional model-type and format specific parameters describing the requirements for the to be exported model files, any string must be up to 25000 characters long.
- For 
dockerformat:cpu_architecture- (string) "x86_64" (default).gpu_architecture- (string) "none" (default), "nvidia". 
 - For 
 
#params=
def params=(value) -> ::Google::Protobuf::Map{::String => ::String}-  value (::Google::Protobuf::Map{::String => ::String}) — 
Additional model-type and format specific parameters describing the requirements for the to be exported model files, any string must be up to 25000 characters long.
- For 
dockerformat:cpu_architecture- (string) "x86_64" (default).gpu_architecture- (string) "none" (default), "nvidia". 
 - For 
 
-  (::Google::Protobuf::Map{::String => ::String}) — 
Additional model-type and format specific parameters describing the requirements for the to be exported model files, any string must be up to 25000 characters long.
- For 
dockerformat:cpu_architecture- (string) "x86_64" (default).gpu_architecture- (string) "none" (default), "nvidia". 
 - For