DEV Community

César Fabián CHÁVEZ LINARES
César Fabián CHÁVEZ LINARES

Posted on

Building a Simple Generative AI Chatbot: A Practical Guide

In this tutorial, we'll walk through creating a generative AI chatbot using Python and the OpenAI API. We'll build a chatbot that can engage in natural conversations while maintaining context and providing helpful responses.

Prerequisites

  • Python 3.8+
  • Basic understanding of Python programming
  • OpenAI API key
  • Basic knowledge of RESTful APIs

Setting Up the Environment

First, let's set up our development environment. Create a new Python project and install the required dependencies:

pip install openai python-dotenv streamlit 
Enter fullscreen mode Exit fullscreen mode

Project Structure

Our chatbot will have a clean, modular structure:

chatbot/ ├── .env ├── app.py ├── chat_handler.py └── requirements.txt 
Enter fullscreen mode Exit fullscreen mode

Implementation

Let's start with our core chatbot logic in chat_handler.py:

import openai from typing import List, Dict import os from dotenv import load_dotenv load_dotenv() class ChatBot: def __init__(self): openai.api_key = os.getenv("OPENAI_API_KEY") self.conversation_history: List[Dict[str, str]] = [] self.system_prompt = """You are a helpful AI assistant. Provide clear, accurate, and engaging responses while maintaining a friendly tone.""" def add_message(self, role: str, content: str): self.conversation_history.append({"role": role, "content": content}) def get_response(self, user_input: str) -> str: # Add user input to conversation history  self.add_message("user", user_input) # Prepare messages for API call  messages = [{"role": "system", "content": self.system_prompt}] + \ self.conversation_history try: # Make API call to OpenAI  response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, max_tokens=1000, temperature=0.7 ) # Extract and store assistant's response  assistant_response = response.choices[0].message.content self.add_message("assistant", assistant_response) return assistant_response except Exception as e: return f"An error occurred: {str(e)}" 
Enter fullscreen mode Exit fullscreen mode

Now, let's create a simple web interface using Streamlit in app.py:

import streamlit as st from chat_handler import ChatBot def main(): st.title("🤖 AI Chatbot") # Initialize session state  if "chatbot" not in st.session_state: st.session_state.chatbot = ChatBot() # Chat interface  if "messages" not in st.session_state: st.session_state.messages = [] # Display chat history  for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) # Chat input  if prompt := st.chat_input("What's on your mind?"): # Add user message to chat history  st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Get bot response  response = st.session_state.chatbot.get_response(prompt) # Add assistant response to chat history  st.session_state.messages.append({"role": "assistant", "content": response}) with st.chat_message("assistant"): st.write(response) if __name__ == "__main__": main() 
Enter fullscreen mode Exit fullscreen mode

Key Features

  1. Conversation Memory: The chatbot maintains context by storing the conversation history.
  2. System Prompt: We define the chatbot's behavior and personality through a system prompt.
  3. Error Handling: The implementation includes basic error handling for API calls.
  4. User Interface: A clean, intuitive web interface using Streamlit.

Running the Chatbot

  1. Create a .env file with your OpenAI API key:
OPENAI_API_KEY=your_api_key_here 
Enter fullscreen mode Exit fullscreen mode
  1. Run the application:
streamlit run app.py 
Enter fullscreen mode Exit fullscreen mode

Potential Enhancements

  1. Conversation Persistence: Add database integration to store chat histories.
  2. Custom Personalities: Allow users to select different chatbot personalities.
  3. Input Validation: Add more robust input validation and sanitization.
  4. API Rate Limiting: Implement rate limiting to manage API usage.
  5. Response Streaming: Add streaming responses for better user experience.

Conclusion

This implementation demonstrates a basic but functional generative AI chatbot. The modular design makes it easy to extend and customize based on specific needs. While this example uses OpenAI's API, the same principles can be applied with other language models or APIs.

Remember that when deploying a chatbot, you should consider:

  • API costs and usage limits
  • User data privacy and security
  • Response latency and optimization
  • Input validation and content moderation

Resources

Top comments (1)

Collapse
 
use-ai-securely profile image
Use AI Securely

Nice!