Step 1: MongoDB Cursor
Here’s how we set up the cursor (reusing your snippet):
const cursor = userObject?.data?.serviceProviderName === 'ZYRO' ? zyroTransactionModel.find(query).cursor() : finoTransactionModel.find(query).cursor(); console.log("Cursor created successfully");
Step 2: Setting Up the ZIP File
Use the yazl library to stream CSV data into a ZIP file:
const yazl = require('yazl'); const zipfile = new yazl.ZipFile(); reply.raw.writeHead(200, { "Content-Type": "application/zip", "Content-Disposition": "attachment; filename=transactions.zip", }); zipfile.outputStream.pipe(reply.raw); const cleanup = async () => { console.log("Cleaning up resources..."); zipfile.end(); // Finalize ZIP await cursor.close(); }; reply.raw.on("close", cleanup); reply.raw.on("error", cleanup);
Step 3: Creating Dynamic CSV Streams
Generate CSV data dynamically and stream it into the ZIP file:
const createNewCSVStream = (headers) => { const csvStream = new Readable({ read() {} }); csvStream.push(headers.join(",") + "\n"); // Add headers return csvStream; }; const filteredHeaders = getHeaders(transactionDownloadFields, userObject?.state?.auth?.role); const currentCSVStream = createNewCSVStream(filteredHeaders); zipfile.addReadStream(currentCSVStream, "transactions_part_1.csv");
Step 4: Streaming MongoDB Data to CSV
Stream the data from MongoDB directly into the CSV:
cursor.on('data', (doc) => { const csvRow = filteredHeaders.map(header => doc[header.key] || '').join(','); currentCSVStream.push(csvRow + '\n'); // Write row }); cursor.on('end', () => { currentCSVStream.push(null); // End the stream zipfile.end(); // Finalize the ZIP });
Step 5: Processing Data from MongoDB Cursor
Stream documents from the MongoDB cursor, transform them as needed, and dynamically write rows to the CSV stream:
try { for await (const doc of cursor) { if (clientDisconnected) { console.log("Client disconnected. Stopping processing..."); break; } streamedCount++; rowCount++; let row = ""; const filteredHeaders = getHeaders( transactionDownloadFields, userObject?.state?.auth?.role ); for (let i = 0; i < filteredHeaders.length; i++) { const field = filteredHeaders[i]; // Fetch the corresponding field configuration from transactionDownloadFields const originalField = transactionDownloadFields.find((f) => f.value === field.value); // Get the value from the transaction document let value = getValueFromTransaction(doc, field.value); // Apply transformation if the field has a transform function if (originalField?.transform) { value = originalField.transform(value); } // Enclose the value in double quotes value = value !== undefined ? `"${value}"` : '"N/A"'; row += (i > 0 ? "," : "") + value; } row += "\n"; currentCSVStream.push(row); // Check if the row count has reached the threshold for the current CSV file if (rowCount >= MAX_ROWS_PER_FILE) { console.log(`Threshold reached for file ${fileIndex - 1}. Starting new file...`); currentCSVStream.push(null); // End the current CSV stream currentCSVStream = createNewCSVStream(); // Start a new stream rowCount = 0; // Reset the row count } } // Finalize the current CSV stream if it has data if (currentCSVStream) { currentCSVStream.push(null); } // Finalize the ZIP file zipfile.end(); console.log(`Successfully streamed ${streamedCount} rows across ${fileIndex - 1} files.`); } catch (error) { console.error("Error during processing:", error); if (!headersSent) reply.status(500).send({ error: "Failed to generate ZIP file" }); } finally { // Cleanup: Close the MongoDB cursor await cursor.close().catch((err) => console.error("Error closing cursor:", err)); }
Summary
Document Iteration Using for await...of:
Streams documents one by one from the MongoDB cursor efficiently.
Enables real-time processing without loading all data into memory.
- Dynamic CSV Row Generation:
Constructs each row dynamically by iterating over filteredHeaders.
Applies transformations using a transform function, if defined in transactionDownloadFields.
Row Threshold and File Splitting:
Monitors the row count against the threshold (MAX_ROWS_PER_FILE).
Ends the current CSV stream and starts a new one when the threshold is reached.
- Error Handling:
Logs and sends an error response if an issue occurs during processing.
Ensures proper cleanup by closing the MongoDB cursor in the finally block.
- Finalizing Streams:
Pushes null to terminate the current CSV stream.
Completes the ZIP file once all rows are processed.
Top comments (0)