DEV Community

Cover image for Building Your First RAG System with Python and OpenAI
Mazyar Yousefiniyae shad
Mazyar Yousefiniyae shad

Posted on

Building Your First RAG System with Python and OpenAI

Hey there! πŸ‘‹ Are you interested in building your own RAG (Retrieval Augmented Generation) system? In this post, I'll show you how to create one step by step using Python and OpenAI. RAG helps AI give better answers by first finding relevant information from your documents before generating a response. It's like giving the AI a chance to "study" before answering!

Table of Contents

What You'll Learn

In this tutorial, you'll learn how to:

  • Set up a RAG project from scratch
  • Process and prepare documents for RAG
  • Use OpenAI embeddings
  • Create a simple retrieval system
  • Connect everything with OpenAI's API

Project Setup

First, let's look at our folder structure:

rag-project/ β”‚ β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ __init__.py β”‚ β”œβ”€β”€ document_loader.py β”‚ β”œβ”€β”€ text_processor.py β”‚ β”œβ”€β”€ embeddings_manager.py β”‚ β”œβ”€β”€ retrieval_system.py β”‚ └── rag_system.py β”‚ β”œβ”€β”€ data/ β”‚ └── documents/ β”‚ β”œβ”€β”€ requirements.txt β”œβ”€β”€ test.py β”œβ”€β”€ README.md └── .env 
Enter fullscreen mode Exit fullscreen mode

Step 1: Setting Up the Environment

First, let's create our virtual environment and install the needed packages:

python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install openai python-dotenv numpy pandas 
Enter fullscreen mode Exit fullscreen mode

Create a requirements.txt file:

openai==1.12.0 python-dotenv==1.0.0 numpy==1.24.3 pandas==2.1.0 
Enter fullscreen mode Exit fullscreen mode

Set up your .env file:

OPENAI_API_KEY=your_api_key_here 
Enter fullscreen mode Exit fullscreen mode

Step 2: Document Loading

Create src/document_loader.py:

import os from typing import List class DocumentLoader: def __init__(self, documents_path: str): self.documents_path = documents_path def load_documents(self) -> List[str]: documents = [] for filename in os.listdir(self.documents_path): if filename.endswith('.txt'): with open(os.path.join(self.documents_path, filename), 'r') as file: documents.append(file.read()) return documents 
Enter fullscreen mode Exit fullscreen mode

Step 3: Text Processing

Create src/text_processor.py:

from typing import List class TextProcessor: def __init__(self, chunk_size: int = 1000): self.chunk_size = chunk_size def split_into_chunks(self, text: str) -> List[str]: words = text.split() chunks = [] current_chunk = [] current_size = 0 for word in words: if current_size + len(word) > self.chunk_size: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_size = len(word) else: current_chunk.append(word) current_size += len(word) + 1 if current_chunk: chunks.append(' '.join(current_chunk)) return chunks 
Enter fullscreen mode Exit fullscreen mode

Step 4: Creating Embeddings

Create src/embeddings_manager.py:

from typing import List import openai import numpy as np class EmbeddingsManager: def __init__(self, api_key: str): openai.api_key = api_key def create_embeddings(self, texts: List[str]) -> List[np.ndarray]: embeddings = [] for text in texts: response = openai.embeddings.create( model="text-embedding-ada-002", input=text ) embeddings.append(np.array(response.data[0].embedding)) return embeddings 
Enter fullscreen mode Exit fullscreen mode

Step 5: Building the Retrieval System

Create src/retrieval_system.py:

import numpy as np from typing import List, Tuple class RetrievalSystem: def __init__(self, chunks: List[str], embeddings: List[np.ndarray]): self.chunks = chunks self.embeddings = embeddings def find_similar_chunks(self, query_embedding: np.ndarray, top_k: int = 3) -> List[Tuple[str, float]]: similarities = [] for i, embedding in enumerate(self.embeddings): similarity = np.dot(query_embedding, embedding) / ( np.linalg.norm(query_embedding) * np.linalg.norm(embedding) ) similarities.append((self.chunks[i], similarity)) return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k] 
Enter fullscreen mode Exit fullscreen mode

Step 6: Connecting with OpenAI

Create src/rag_system.py:

import os from dotenv import load_dotenv from typing import List import openai from .document_loader import DocumentLoader from .text_processor import TextProcessor from .embeddings_manager import EmbeddingsManager from .retrieval_system import RetrievalSystem class RAGSystem: def __init__(self): load_dotenv() self.api_key = os.getenv('OPENAI_API_KEY') self.loader = DocumentLoader('data/documents') self.processor = TextProcessor() self.embeddings_manager = EmbeddingsManager(self.api_key) # Initialize system  self.initialize_system() def initialize_system(self): # Load and process documents  documents = self.loader.load_documents() self.chunks = [] for doc in documents: self.chunks.extend(self.processor.split_into_chunks(doc)) # Create embeddings  self.embeddings = self.embeddings_manager.create_embeddings(self.chunks) # Initialize retrieval system  self.retrieval_system = RetrievalSystem(self.chunks, self.embeddings) def answer_question(self, question: str) -> str: # Get question embedding  question_embedding = self.embeddings_manager.create_embeddings([question])[0] # Get relevant chunks  relevant_chunks = self.retrieval_system.find_similar_chunks(question_embedding) # Prepare context  context = "\n".join([chunk[0] for chunk in relevant_chunks]) # Create prompt  prompt = f"""Context: {context}\n\nQuestion: {question}\n\nAnswer:""" # Get response from OpenAI  response = openai.chat.completions.create( model="gpt-4-turbo-preview", messages=[ {"role": "system", "content": "You are a helpful assistant. Use the provided context to answer the question."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content 
Enter fullscreen mode Exit fullscreen mode

Step 7: Putting It All Together

Here's how to use the system:

Add some test documents to your data/documents folder:

story.txt 
Enter fullscreen mode Exit fullscreen mode

Then run a test:

# test.py from src.rag_system import RAGSystem # Initialize the RAG system rag = RAGSystem() # Ask a question question = "What was the answer to the guardian’s riddle, and how did it help Kai?" answer = rag.answer_question(question) print(answer) 
Enter fullscreen mode Exit fullscreen mode

Conclusion

Congratulations! You've built a basic RAG system that can:

  • Load and process documents
  • Create embeddings using OpenAI
  • Find relevant information using similarity search
  • Generate answers using context

This is just the beginning - you can improve this system by:

  • Adding better text chunking methods
  • Implementing caching for embeddings
  • Adding error handling
  • Improving the prompt engineering
  • Adding vector database support

Github Repository

You can find the complete code for this project on GitHub: Python Rag System.

Remember to keep your API key safe and monitor your API usage!

Happy coding! πŸš€

Top comments (0)