Hey there! π Are you interested in building your own RAG (Retrieval Augmented Generation) system? In this post, I'll show you how to create one step by step using Python and OpenAI. RAG helps AI give better answers by first finding relevant information from your documents before generating a response. It's like giving the AI a chance to "study" before answering!
Table of Contents
- What You'll Learn
- Project Setup
- Folder Structure
- Step 1: Setting Up the Environment
- Step 2: Document Loading
- Step 3: Text Processing
- Step 4: Creating Embeddings
- Step 5: Building the Retrieval System
- Step 6: Connecting with OpenAI
- Step 7: Putting It All Together
- Conclusion
What You'll Learn
In this tutorial, you'll learn how to:
- Set up a RAG project from scratch
- Process and prepare documents for RAG
- Use OpenAI embeddings
- Create a simple retrieval system
- Connect everything with OpenAI's API
Project Setup
First, let's look at our folder structure:
rag-project/ β βββ src/ β βββ __init__.py β βββ document_loader.py β βββ text_processor.py β βββ embeddings_manager.py β βββ retrieval_system.py β βββ rag_system.py β βββ data/ β βββ documents/ β βββ requirements.txt βββ test.py βββ README.md βββ .env
Step 1: Setting Up the Environment
First, let's create our virtual environment and install the needed packages:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install openai python-dotenv numpy pandas
Create a requirements.txt
file:
openai==1.12.0 python-dotenv==1.0.0 numpy==1.24.3 pandas==2.1.0
Set up your .env
file:
OPENAI_API_KEY=your_api_key_here
Step 2: Document Loading
Create src/document_loader.py
:
import os from typing import List class DocumentLoader: def __init__(self, documents_path: str): self.documents_path = documents_path def load_documents(self) -> List[str]: documents = [] for filename in os.listdir(self.documents_path): if filename.endswith('.txt'): with open(os.path.join(self.documents_path, filename), 'r') as file: documents.append(file.read()) return documents
Step 3: Text Processing
Create src/text_processor.py
:
from typing import List class TextProcessor: def __init__(self, chunk_size: int = 1000): self.chunk_size = chunk_size def split_into_chunks(self, text: str) -> List[str]: words = text.split() chunks = [] current_chunk = [] current_size = 0 for word in words: if current_size + len(word) > self.chunk_size: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_size = len(word) else: current_chunk.append(word) current_size += len(word) + 1 if current_chunk: chunks.append(' '.join(current_chunk)) return chunks
Step 4: Creating Embeddings
Create src/embeddings_manager.py
:
from typing import List import openai import numpy as np class EmbeddingsManager: def __init__(self, api_key: str): openai.api_key = api_key def create_embeddings(self, texts: List[str]) -> List[np.ndarray]: embeddings = [] for text in texts: response = openai.embeddings.create( model="text-embedding-ada-002", input=text ) embeddings.append(np.array(response.data[0].embedding)) return embeddings
Step 5: Building the Retrieval System
Create src/retrieval_system.py
:
import numpy as np from typing import List, Tuple class RetrievalSystem: def __init__(self, chunks: List[str], embeddings: List[np.ndarray]): self.chunks = chunks self.embeddings = embeddings def find_similar_chunks(self, query_embedding: np.ndarray, top_k: int = 3) -> List[Tuple[str, float]]: similarities = [] for i, embedding in enumerate(self.embeddings): similarity = np.dot(query_embedding, embedding) / ( np.linalg.norm(query_embedding) * np.linalg.norm(embedding) ) similarities.append((self.chunks[i], similarity)) return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]
Step 6: Connecting with OpenAI
Create src/rag_system.py
:
import os from dotenv import load_dotenv from typing import List import openai from .document_loader import DocumentLoader from .text_processor import TextProcessor from .embeddings_manager import EmbeddingsManager from .retrieval_system import RetrievalSystem class RAGSystem: def __init__(self): load_dotenv() self.api_key = os.getenv('OPENAI_API_KEY') self.loader = DocumentLoader('data/documents') self.processor = TextProcessor() self.embeddings_manager = EmbeddingsManager(self.api_key) # Initialize system self.initialize_system() def initialize_system(self): # Load and process documents documents = self.loader.load_documents() self.chunks = [] for doc in documents: self.chunks.extend(self.processor.split_into_chunks(doc)) # Create embeddings self.embeddings = self.embeddings_manager.create_embeddings(self.chunks) # Initialize retrieval system self.retrieval_system = RetrievalSystem(self.chunks, self.embeddings) def answer_question(self, question: str) -> str: # Get question embedding question_embedding = self.embeddings_manager.create_embeddings([question])[0] # Get relevant chunks relevant_chunks = self.retrieval_system.find_similar_chunks(question_embedding) # Prepare context context = "\n".join([chunk[0] for chunk in relevant_chunks]) # Create prompt prompt = f"""Context: {context}\n\nQuestion: {question}\n\nAnswer:""" # Get response from OpenAI response = openai.chat.completions.create( model="gpt-4-turbo-preview", messages=[ {"role": "system", "content": "You are a helpful assistant. Use the provided context to answer the question."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content
Step 7: Putting It All Together
Here's how to use the system:
Add some test documents to your data/documents
folder:
story.txt
Then run a test:
# test.py from src.rag_system import RAGSystem # Initialize the RAG system rag = RAGSystem() # Ask a question question = "What was the answer to the guardianβs riddle, and how did it help Kai?" answer = rag.answer_question(question) print(answer)
Conclusion
Congratulations! You've built a basic RAG system that can:
- Load and process documents
- Create embeddings using OpenAI
- Find relevant information using similarity search
- Generate answers using context
This is just the beginning - you can improve this system by:
- Adding better text chunking methods
- Implementing caching for embeddings
- Adding error handling
- Improving the prompt engineering
- Adding vector database support
Github Repository
You can find the complete code for this project on GitHub: Python Rag System.
Remember to keep your API key safe and monitor your API usage!
Happy coding! π
Top comments (0)