![]() | ![]() |
---|
Want to do fast calculations in Ruby? NArray is your friend!
NArray & Cumo
Numo::NArray
NArray is a powerful N-dimensional array library for science computing in Ruby. Machine learning libraries such as Rumale and Red Chainer use NArray.
Cumo
Cumo (pronounced "koomo") is a CUDA-aware, GPU-optimized numerical library that offers a significant performance boost over Ruby Numo, while (mostly) maintaining drop-in compatibility.
NArray Data types
Integer | Unsigned Integer | Float | Complex number |
---|---|---|---|
Numo::Int8 | Numo::UInt8 | Numo::SFloat | Numo::SComplex |
Numo::Int16 | Numo::UInt16 | Numo::DFloat | Numo::DComplex |
Numo::Int32 | Numo::UInt32 | ||
Numo::Int64 | Numo::UInt64 |
Import the Library
gem install numo-narray
require 'numo/narray' include Numo
Creating Arrays
Int32[1,2,3]
[1, 2, 3]
Int32.new(3,3).seq
[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]
a = [[0, 1], [2, 3]] Int32[*a]
[[0, 1],
[2, 3]]
Int32[1..5]
[1, 2, 3, 4, 5]
Int32[1...5]
[1, 2, 3, 4]
Initial Placeholders
Create an array of zeros
x = Int32.zeros(3,3)
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
Create an array of ones
x = Int32.ones(3,3)
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]
Create an array of twos
z = y.fill 2
[[2, 2, 2],
[2, 2, 2],
[2, 2, 2]]
Create a 3x3 identity matrix
y = Int32.eye(3,3)
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
Create an array of evenly spaced values
f = DFloat.linspace(-20,20,11)
[-20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20]
Arithmetic operations
require 'numo/narray' include Numo
a = Int32.new(3,3).seq
[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]
b = Int32.new(3,3).seq + 1
[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
a + b
[[1, 3, 5],
[7, 9, 11],
[13, 15, 17]]
b - a
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]
a * b
[[0, 2, 6],
[12, 20, 30],
[42, 56, 72]]
a * 2
[[0, 2, 4],
[6, 8, 10],
[12, 14, 16]]
a * 0.1
[[0, 0.1, 0.2],
[0.3, 0.4, 0.5],
[0.6, 0.7, 0.8]]
Type conversion
a = UInt8[1,2,3] SFloat.cast(a) # => Numo::SFloat#shape=[3]
Dot product
c = Int32.new(2,2).seq # [[0, 1], # [2, 3]] d = Int32.new(2,1).seq # [[0], # [1]] c.dot d # [[1], # [3]]
install Numo::Linalg
Numo::Linalg.dot(c,d) Numo::Linalg.matmul(c,d) # [[1], # [3]]
Inspecting NArray
e = DFloat.new(3,4).seq # Array dimensions e.shape # => [3, 4] # Length of array e.size # => 12 # Number of array dimensions e.rank # => 2 e.ndim # => 2 # Byte size e.byte_size # => 96
Convert NArray to string
s = UInt8.ones(2,2).to_string # => "\x01\x01\x01\x01" # [[1, 1], # [1, 1]] UInt8.from_string(d) # => Numo::UInt8#shape=[4] # [1, 1, 1, 1]
Convert NArray to Ruby Array
use to_a
a = UInt8[1,2,3] a.to_a
NMath
sin
cos
tan
log
, etc.
f = DFloat.linspace(-20,20,11) # [-20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20] NMath.sin(f) # [-0.912945, 0.287903, 0.536573, -0.989358, 0.756802, 0, -0.756802, ...] NMath.cos(f) # [-0.912945, 0.287903, 0.536573, -0.989358, 0.756802, 0, -0.756802, ...] NMath.tanh(f) # [-1, -1, -1, -1, -0.999329, 0, 0.999329, 1, 1, 1, 1] NMath.log(f) # [nan, nan, nan, nan, nan, -inf, 1.38629, 2.07944, 2.48491, 2.77259, ...] NMath.log10(f) # [nan, nan, nan, nan, nan, -inf, 0.60206, 0.90309, 1.07918, 1.20412, ...] NMath.sqrt(f) # [-nan, -nan, -nan, -nan, -nan, 0, 2, 2.82843, 3.4641, 4, 4.47214]
Subsetting, Slicing, Indexing
a = Int32.new(10,10).seq # [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], # [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], # [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], # [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], # [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], # [50, 51, 52, 53, 54, 55, 56, 57, 58, 59], # [60, 61, 62, 63, 64, 65, 66, 67, 68, 69], # [70, 71, 72, 73, 74, 75, 76, 77, 78, 79], # [80, 81, 82, 83, 84, 85, 86, 87, 88, 89], # [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]] a[0,true] # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] a[true, 0] # [0, 10, 20, 30, 40, 50, 60, 70, 80, 90] a[1..3, 2..4] # [[12, 13, 14], # [22, 23, 24], # [32, 33, 34]] a[1] # 1 a[-1] # 99 a.diagonal # [0, 11, 22, 33, 44, 55, 66, 77, 88, 99] a.transpose # [[0, 10, 20, 30, 40, 50, 60, 70, 80, 90], # [1, 11, 21, 31, 41, 51, 61, 71, 81, 91], # [2, 12, 22, 32, 42, 52, 62, 72, 82, 92], # [3, 13, 23, 33, 43, 53, 63, 73, 83, 93], # [4, 14, 24, 34, 44, 54, 64, 74, 84, 94], # [5, 15, 25, 35, 45, 55, 65, 75, 85, 95], # [6, 16, 26, 36, 46, 56, 66, 76, 86, 96], # [7, 17, 27, 37, 47, 57, 67, 77, 87, 97], # [8, 18, 28, 38, 48, 58, 68, 78, 88, 98], # [9, 19, 29, 39, 49, 59, 69, 79, 89, 99]] a.reverse # [[99, 98, 97, 96, 95, 94, 93, 92, 91, 90], # [89, 88, 87, 86, 85, 84, 83, 82, 81, 80], # [79, 78, 77, 76, 75, 74, 73, 72, 71, 70], # [69, 68, 67, 66, 65, 64, 63, 62, 61, 60], # [59, 58, 57, 56, 55, 54, 53, 52, 51, 50], # [49, 48, 47, 46, 45, 44, 43, 42, 41, 40], # [39, 38, 37, 36, 35, 34, 33, 32, 31, 30], # [29, 28, 27, 26, 25, 24, 23, 22, 21, 20], # [19, 18, 17, 16, 15, 14, 13, 12, 11, 10], # [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]] a.reshape(4,25) # [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...], # [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, ...], # [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, ...], # [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, ...] a.max # 99 a.min # 0 a.minmax # [0, 99] a.sum # 4950 a.sum 0 # [450, 460, 470, 480, 490, 500, 510, 520, 530, 540] a > 49 # => Numo::Bit#shape=[10,10] # [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] bit = (a > 49) bit.where # => Numo::Int32#shape=[50] # [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, ...] a.eq 33 # [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] (a.eq 33).where # => Numo::Int32#shape=[1] # [33] a[a > 90] # [91, 92, 93, 94, 95, 96, 97, 98, 99]
a = Int32.new(10).seq - 5 # [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] a.abs # a = Int32.new(10).seq - 5 # [5, 4, 3, 2, 1, 0, 1, 2, 3, 4] b = Int32.new(10).seq b.cumsum # [0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
Rnadom values
x = DFloat.new(1000).rand y = DFloat.new(1000).rand
x = DFloat.new(1000).rand_norm y = DFloat.new(1000).rand_norm # rand_norm([mu,[sigma]])
Statistics
a = DFloat.new(100,100).rand_norm(1, 2) # => Numo::DFloat#shape=[100,100] a.size # => 10000 a.mean # => 0.9941970100670163 a.median # => Numo::DFloat#shape=[] # 1.0030267444162986 a.var # => 3.9539947182922974 a.stddev # => 1.9884654179271757 a.rms # => 2.223067028599605
Sorting Arrays
na = Int32[1, 10, 2, 5, 9, 8, 12, 11, 3, 7, 4, 6] na.sort #=> Numo::Int32#shape=[12] #[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] na.max_index # => 6 na.min_index # => 0 na.sort_index => Numo::Int32#shape=[12] [0, 2, 8, 10, 3, 11, 9, 5, 4, 1, 7, 6]
View
a = Int8[1,2,3,4,5] # [1, 2, 3, 4, 5] b = a.view # => Numo::Int8(view)#shape=[5] # [1, 2, 3, 4, 5] a[0] = 0 b # => Numo::Int8(view)#shape=[5] # [0, 2, 3, 4, 5] b[1] = 0 a # => Numo::Int8#shape=[5] # [0, 0, 3, 4, 5]
Saving & Loading
a = Int32.new(2,2).seq # save s = Marshal.dump(a) File.binwrite("data", s) # load b = Marshal.load(File.read("data")) a == b # true
Combining Arrays
a = Int32[1,2,3] b = Int32[4,5,6] a.append b # [1,2,3,4,5,6] a.concatenate b # [1,2,3,4,5,6] a.hstack b Int32.hstack [a,b] # [1,2,3,4,5,6] Int32.dstack [b,b] # => Numo::Int32#shape=[2,3,2] # [[[1, 1], # [2, 2], # [3, 3]], # [[4, 4], # [5, 5], # [6, 6]]]
Documents
This is just some of the features of NArray. If you want to know more, please refer to these webpages.
Have a nice day!
Top comments (0)