*Memos:
tile() can get the 1D or more D tensor of zero or more repeated elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
tile()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st or more arguments with a tensor aredims
(Required-Type:tuple
ofint
,list
ofint
or size()): *Memos:- If at least one dimension is
0
, an empty tensor is returned. -
dims=
mustn't be used for the one or more dimensions without a tuple or list.
- If at least one dimension is
import torch my_tensor = torch.tensor([7, 4, 5]) torch.tile(input=my_tensor, dims=(0,)) my_tensor.tile(dims=(0,)) my_tensor.tile(0,) torch.tile(input=my_tensor, dims=torch.tensor([]).size()) # tensor([], dtype=torch.int64) torch.tile(input=my_tensor, dims=()) torch.tile(input=my_tensor, dims=(1,)) torch.tile(input=my_tensor, dims=torch.tensor(8).size()) torch.tile(input=my_tensor, dims=torch.tensor([8]).size()) # tensor([7, 4, 5]) torch.tile(input=my_tensor, dims=(2,)) torch.tile(input=my_tensor, dims=torch.tensor([8, 3]).size()) # tensor([7, 4, 5, 7, 4, 5]) torch.tile(input=my_tensor, dims=(3,)) torch.tile(input=my_tensor, dims=torch.tensor([8, 3, 6]).size()) # tensor([7, 4, 5, 7, 4, 5, 7, 4, 5]) etc. torch.tile(input=my_tensor, dims=(1, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[8]]).size()) # tensor([[7, 4, 5]]) torch.tile(input=my_tensor, dims=(1, 2)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 3]]).size()) # tensor([[7, 4, 5, 7, 4, 5]]) torch.tile(input=my_tensor, dims=(1, 3)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4]]).size()) # tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1]]) etc. torch.tile(input=my_tensor, dims=(2, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[8], [2]]).size()) # tensor([[3, 5, 1], # [3, 5, 1]]) torch.tile(input=my_tensor, dims=(2, 2)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 2], [4, 0]]).size()) # tensor([[3, 5, 1, 3, 5, 1], # [3, 5, 1, 3, 5, 1]]) torch.tile(input=my_tensor, dims=(2, 3)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4], [0, 7, 9]]).size()) # tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1], # [3, 5, 1, 3, 5, 1, 3, 5, 1]]) etc. torch.tile(input=my_tensor, dims=(3, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[8], [2], [4]]).size()) # tensor([[3, 5, 1], # [3, 5, 1], # [3, 5, 1]]) etc. torch.tile(input=my_tensor, dims=(1, 1, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[[8]]]).size()) # tensor([[[3, 5, 1]]]) etc. torch.tile(input=my_tensor, dims=(3, 2, 1)) # tensor([[[3, 5, 1], [3, 5, 1]], # [[3, 5, 1], [3, 5, 1]], # [[3, 5, 1], [3, 5, 1]]]) torch.tile(input=my_tensor, dims=(1, 0, 1)) # tensor([], size=(1, 0, 3), dtype=torch.int64) my_tensor = torch.tensor([3., 5., 1.]) torch.tile(input=my_tensor, dims=(2,)) # tensor([3., 5., 1., 3., 5., 1.]) my_tensor = torch.tensor([3.+0.j, 5.+0.j, 1.+0.j]) torch.tile(input=my_tensor, dims=(2,)) # tensor([3.+0.j, 5.+0.j, 1.+0.j, 3.+0.j, 5.+0.j, 1.+0.j]) my_tensor = torch.tensor([True, False, True]) torch.tile(input=my_tensor, dims=(2,)) # tensor([True, False, True, True, False, True]) my_tensor = torch.tensor([[3, 5, 1], [6, 0, 5]]) torch.tile(input=my_tensor, dims=()) torch.tile(input=my_tensor, dims=(1,)) torch.tile(input=my_tensor, dims=torch.tensor(8).size()) torch.tile(input=my_tensor, dims=torch.tensor([8]).size()) # tensor([[3, 5, 1], # [6, 0, 5]]) torch.tile(input=my_tensor, dims=(2,)) torch.tile(input=my_tensor, dims=torch.tensor([8, 2]).size()) # tensor([[3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5]]) torch.tile(input=my_tensor, dims=(3,)) torch.tile(input=my_tensor, dims=torch.tensor([8, 2, 4]).size()) # tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5, 6, 0, 5]]) etc. torch.tile(input=my_tensor, dims=(1, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[8]]).size()) # tensor([[3, 5, 1], # [6, 0, 5]]) torch.tile(input=my_tensor, dims=(1, 2)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 2]]).size()) # tensor([[3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5]]) torch.tile(input=my_tensor, dims=(1, 3)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4]]).size()) # tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5, 6, 0, 5]]) etc. torch.tile(input=my_tensor, dims=(2, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[8], [2]]).size()) # tensor([[3, 5, 1], # [6, 0, 5], # [3, 5, 1], # [6, 0, 5]]) torch.tile(input=my_tensor, dims=(2, 2)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 2], [4, 0]]).size()) # tensor([[3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5], # [3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5]]) torch.tile(input=my_tensor, dims=(2, 3)) torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4], [0, 7, 9]]).size()) # tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5, 6, 0, 5], # [3, 5, 1, 3, 5, 1, 3, 5, 1], # [6, 0, 5, 6, 0, 5, 6, 0, 5]]) etc. torch.tile(input=my_tensor, dims=(3, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[8], [2], [4]]).size()) # tensor([[3, 5, 1], # [6, 0, 5], # [3, 5, 1], # [6, 0, 5], # [3, 5, 1], # [6, 0, 5]]) etc. torch.tile(input=my_tensor, dims=(1, 1, 1)) torch.tile(input=my_tensor, dims=torch.tensor([[[8]]]).size()) # tensor([[[3, 5, 1], # [6, 0, 5]]]) etc.
Top comments (0)