*Memos:
- My post explains RandomResizedCrop() about
size
argument (1). - My post explains Pad().
- My post explains OxfordIIITPet().
Resize() can resize an image as shown below:
*Memos:
- The 1st argument for initialization is
size
(Required-Type:int
,tuple/list
(int
) or size()): *Memos:- It's
[height, width]
. - It must be 1 <= x.
-
None
can be explicitly set to it only ifmax_size
isn'tNone
. - A tuple/list must be the 1D with 1 or 2 elements.
- A single value(
int
ortuple/list
(int
)) is applied to a smaller image's width or height edge, then the other larger width or height edge is also resized: *Memos: - If an image's width is smaller than its height, it's
[size * height / width, size]
. - If an image width is larger than its height, it's
[size, size * width / height]
. - If an image width is equal to its height, it's
[size, size]
.
- It's
- The 2nd argument for initialization is
interpolation
(Optional-Default:InterpolationMode.BILINEAR
-Type:InterpolationMode): *Memos:-
NEAREST
,NEAREST_EXACT
,BILINEAR
,BICUBIC
,BOX
,HAMMING
andLANCZOS
modes can be used. - My post explains InterpolationMode with and without anti-aliasing.
-
- The 3rd argument for initialization is
max_size
(Optional-Default:None
-Type:int
): *Memos:- It's only supported if
size
is a single value(int
ortuple/list
(int
)). - After
size
is applied if a larger image's width or height edge exceeds it, it's applied to a larger image's width or height edge to limit the image size, then the other smaller image's width or height edge also becomes smaller than before.
- It's only supported if
- The 4th argument for initialization is
antialias
(Optional-Default:True
-Type:bool
): *Memos:- If it's
True
(Default) andinterpolation
isBILINEAR
orBICUBIC
, anti-aliasing is applied for both a PIL image and tensor. - If it's
False
orNone
andinterpolation
isBILINEAR
orBICUBIC
, anti-aliasing is still applied for a PIL image while anti-aliasing isn't applied for a tensor.
- If it's
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
/float
/complex
/bool
)): *Memos:- A tensor must be 3D or more D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import Resize from torchvision.transforms.functional import InterpolationMode r = Resize(size=100) r = Resize(size=100, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=True) r # Resize(size=[100], interpolation=InterpolationMode.BILINEAR, # antialias=True) r.size # [100] r.interpolation # <InterpolationMode.BILINEAR: 'bilinear'> print(r.max_size) # None r.antialias # True origin_data = OxfordIIITPet( root="data", transform=None ) s1000_data = OxfordIIITPet( # `s` is size. root="data", transform=Resize(size=1000) # transform=Resize(size=[1000]) # transform=Resize(size=[1000, 1000]) ) s500_data = OxfordIIITPet( root="data", transform=Resize(size=500) ) s100_data = OxfordIIITPet( root="data", transform=Resize(size=100) ) s50_data = OxfordIIITPet( root="data", transform=Resize(size=50) ) s10_data = OxfordIIITPet( root="data", transform=Resize(size=10) ) s1_data = OxfordIIITPet( root="data", transform=Resize(size=1) ) s600_900_data = OxfordIIITPet( root="data", transform=Resize(size=[600, 900]) ) s900_600_data = OxfordIIITPet( root="data", transform=Resize(size=[900, 600]) ) s200_300_data = OxfordIIITPet( root="data", transform=Resize(size=[200, 300]) ) s300_200_data = OxfordIIITPet( root="data", transform=Resize(size=[300, 200]) ) s1000origin_data = OxfordIIITPet( root="data", transform=Resize(size=1000) ) s1000ms1100_data = OxfordIIITPet( # `ms` is max_size. root="data", transform=Resize(size=1000, max_size=1100) ) sNonems1100_data = OxfordIIITPet( root="data", transform=Resize(size=None, max_size=1100) ) s100origin_data = OxfordIIITPet( root="data", transform=Resize(size=100, max_size=110) ) s100ms110_data = OxfordIIITPet( root="data", transform=Resize(size=100, max_size=110) ) sNonems110_data = OxfordIIITPet( root="data", transform=Resize(size=None, max_size=110) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") show_images1(data=s1000_data, main_title="s1000_data") show_images1(data=s500_data, main_title="s500_data") show_images1(data=s100_data, main_title="s100_data") show_images1(data=s50_data, main_title="s50_data") show_images1(data=s10_data, main_title="s10_data") show_images1(data=s1_data, main_title="s1_data") print() show_images1(data=origin_data, main_title="origin_data") show_images1(data=s600_900_data, main_title="s600_900_data") show_images1(data=s900_600_data, main_title="s900_600_data") show_images1(data=s600_900_data, main_title="s200_300_data") show_images1(data=s900_600_data, main_title="s300_200_data") print() show_images1(data=s1000origin_data, main_title="s1000origin_data") show_images1(data=s1000ms1100_data, main_title="s1000ms1100_data") show_images1(data=sNonems1100_data, main_title="sNonems1100_data") print() show_images1(data=s100origin_data, main_title="s100origin_data") show_images1(data=s100ms110_data, main_title="s100ms110_data") show_images1(data=sNonems110_data, main_title="sNonems110_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, ip=InterpolationMode.BILINEAR, ms=None, a=True): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) r = Resize(size=s, interpolation=ip, max_size=ms, antialias=a) plt.imshow(X=r(im)) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="s1000_data", s=1000) show_images2(data=origin_data, main_title="s500_data", s=500) show_images2(data=origin_data, main_title="s100_data", s=100) show_images2(data=origin_data, main_title="s50_data", s=50) show_images2(data=origin_data, main_title="s10_data", s=10) show_images2(data=origin_data, main_title="s1_data", s=1) print() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="s600_900_data", s=[600, 900]) show_images2(data=origin_data, main_title="s900_600_data", s=[900, 600]) show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300]) show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200]) print() show_images2(data=origin_data, main_title="s1000origin_data", s=1000) show_images2(data=origin_data, main_title="s1000ms1100_data", s=1000, ms=1100) show_images2(data=origin_data, main_title="sNonems1100_data", ms=1100) print() show_images2(data=origin_data, main_title="s100origin_data", s=100) show_images2(data=origin_data, main_title="s100ms110_data", s=100, ms=110) show_images2(data=origin_data, main_title="sNonems110_data", ms=110)
Top comments (0)