*Memos:
- My post explains RandomResizedCrop() about
size
argument (1). - My post explains RandomResizedCrop() about
size
argument (2). - My post explains RandomResizedCrop() about
scale
argument (1). - My post explains RandomResizedCrop() about
scale
argument (2). - My post explains RandomResizedCrop() about
ratio
argument (2).
RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below. *It's about ratio
argument (1):
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomResizedCrop from torchvision.transforms.functional import InterpolationMode origin_data = OxfordIIITPet( root="data", transform=None ) s1000r1_1origin_data = OxfordIIITPet( # `s` is size and `r` is ratio. root="data", transform=RandomResizedCrop(size=1000, ratio=[1, 1]) ) s1000r01_10_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.1, 10]) ) s1000r01_1_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.1, 1]) ) s1000r1_10_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[1, 10]) ) s1000r09_09_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.9, 0.9]) ) s1000r08_08_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.8, 0.8]) ) s1000r07_07_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.7, 0.7]) ) s1000r06_06_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.6, 0.6]) ) s1000r05_05_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.5, 0.5]) ) s1000r04_04_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.4, 0.4]) ) s1000r03_03_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.3, 0.3]) ) s1000r02_02_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.2, 0.2]) ) s1000r01_01_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.1, 0.1]) ) s1000r001_001_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.01, 0.01]) ) s1000r0001_0001_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.001, 0.001]) ) s1000r00001_00001_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[0.0001, 0.0001]) ) s1000r2_2_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[2, 2]) ) s1000r3_3_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[3, 3]) ) s1000r4_4_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[4, 4]) ) s1000r5_5_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[5, 5]) ) s1000r6_6_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[6, 6]) ) s1000r7_7_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[7, 7]) ) s1000r8_8_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[8, 8]) ) s1000r9_9_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[9, 9]) ) s1000r10_10_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[10, 10]) ) s1000r100_100_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[100, 100]) ) s1000r1000_1000_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[1000, 1000]) ) s1000r10000_10000_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, ratio=[10000, 10000]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data") show_images1(data=s1000r01_10_data, main_title="s1000r01_10_data") show_images1(data=s1000r01_1_data, main_title="s1000r01_1_data") show_images1(data=s1000r1_10_data, main_title="s1000r1_10_data") print() show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data") show_images1(data=s1000r09_09_data , main_title="s1000r09_09_data") show_images1(data=s1000r08_08_data, main_title="s1000r08_08_data") show_images1(data=s1000r07_07_data, main_title="s1000r07_07_data") show_images1(data=s1000r06_06_data, main_title="s1000r06_06_data") show_images1(data=s1000r05_05_data, main_title="s1000r05_05_data") show_images1(data=s1000r04_04_data, main_title="s1000r04_04_data") show_images1(data=s1000r03_03_data, main_title="s1000r03_03_data") show_images1(data=s1000r02_02_data, main_title="s1000r02_02_data") show_images1(data=s1000r01_01_data, main_title="s1000r01_01_data") show_images1(data=s1000r001_001_data, main_title="s1000r001_001_data") show_images1(data=s1000r0001_0001_data, main_title="s1000r0001_0001_data") show_images1(data=s1000r00001_00001_data, main_title="s1000r00001_00001_data") print() show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data") show_images1(data=s1000r2_2_data, main_title="s1000r2_2_data") show_images1(data=s1000r3_3_data, main_title="s1000r3_3_data") show_images1(data=s1000r4_4_data, main_title="s1000r4_4_data") show_images1(data=s1000r5_5_data, main_title="s1000r5_5_data") show_images1(data=s1000r6_6_data, main_title="s1000r6_6_data") show_images1(data=s1000r7_7_data, main_title="s1000r7_7_data") show_images1(data=s1000r8_8_data, main_title="s1000r8_8_data") show_images1(data=s1000r9_9_data, main_title="s1000r9_9_data") show_images1(data=s1000r10_10_data, main_title="s1000r10_10_data") show_images1(data=s1000r100_100_data, main_title="s1000r100_100_data") show_images1(data=s1000r1000_1000_data, main_title="s1000r1000_1000_data") show_images1(data=s1000r10000_10000_data, main_title="s1000r10000_10000_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, sc=(0.08, 1), r=(0.75, 1.3333333333333333), ip=InterpolationMode.BILINEAR, a=True): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) rrc = RandomResizedCrop(size=s, scale=sc, ratio=r, interpolation=ip, antialias=a) plt.imshow(X=rrc(im)) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000, r=[1, 1]) show_images2(data=origin_data, main_title="s1000r01_10_data", s=1000, r=[0.1, 10]) show_images2(data=origin_data, main_title="s1000r01_1_data", s=1000, r=[0.1, 1]) show_images2(data=origin_data, main_title="s1000r1_10_data", s=1000, r=[1, 10]) print() show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000, r=[1, 1]) show_images2(data=origin_data, main_title="s1000r09_09_data", s=1000, r=[0.9, 0.9]) show_images2(data=origin_data, main_title="s1000r08_08_data", s=1000, r=[0.8, 0.8]) show_images2(data=origin_data, main_title="s1000r07_07_data", s=1000, r=[0.7, 0.7]) show_images2(data=origin_data, main_title="s1000r06_06_data", s=1000, r=[0.6, 0.6]) show_images2(data=origin_data, main_title="s1000r05_05_data", s=1000, r=[0.5, 0.5]) show_images2(data=origin_data, main_title="s1000r04_04_data", s=1000, r=[0.4, 0.4]) show_images2(data=origin_data, main_title="s1000r03_03_data", s=1000, r=[0.3, 0.3]) show_images2(data=origin_data, main_title="s1000r02_02_data", s=1000, r=[0.2, 0.2]) show_images2(data=origin_data, main_title="s1000r01_01_data", s=1000, r=[0.1, 0.1]) show_images2(data=origin_data, main_title="s1000r001_001_data", s=1000, r=[0.01, 0.01]) show_images2(data=origin_data, main_title="s1000r0001_0001_data", s=1000, r=[0.001, 0.001]) show_images2(data=origin_data, main_title="s1000r00001_00001_data", s=1000, r=[0.0001, 0.0001]) print() show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000, r=[1, 1]) show_images2(data=origin_data, main_title="s1000r2_2_data", s=1000, r=[2, 2]) show_images2(data=origin_data, main_title="s1000r3_3_data", s=1000, r=[3, 3]) show_images2(data=origin_data, main_title="s1000r4_4_data", s=1000, r=[4, 4]) show_images2(data=origin_data, main_title="s1000r5_5_data", s=1000, r=[5, 5]) show_images2(data=origin_data, main_title="s1000r6_6_data", s=1000, r=[6, 6]) show_images2(data=origin_data, main_title="s1000r7_7_data", s=1000, r=[7, 7]) show_images2(data=origin_data, main_title="s1000r8_8_data", s=1000, r=[8, 8]) show_images2(data=origin_data, main_title="s1000r9_9_data", s=1000, r=[9, 9]) show_images2(data=origin_data, main_title="s1000r10_10_data", s=1000, r=[10, 10]) show_images2(data=origin_data, main_title="s1000r100_100_data", s=1000, r=[100, 100]) show_images2(data=origin_data, main_title="s1000r1000_1000_data", s=1000, r=[1000, 1000]) show_images2(data=origin_data, main_title="s1000r10000_10000_data", s=1000, r=[10000, 10000])
Top comments (0)