DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandomPosterize in PyTorch

Buy Me a Coffee

*My post explains OxfordIIITPet().

RandomPosterize() can randomly posterize an image with a given probability as shown below:

*Memos:

  • The 1st argument for initialization is bits(Required-Type:int): *Memos:
    • It's the number of bits to keep for each channel.
    • It must be x <= 8.
  • The 2nd argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos:
    • It's the probability of whether an image is posterized or not.
    • It must be 0 <= x <= 1.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int/float)): *Memos:
    • A tensor must be 0D or more D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomPosterize rp = RandomPosterize(bits=1) rp = RandomPosterize(bits=1, p=0.5) rp # RandomPosterize(p=0.5, bits=1)  rp.bits # 1  rp.p # 0.5  origin_data = OxfordIIITPet( root="data", transform=None ) b8p1origin_data = OxfordIIITPet( # `b` is bits.  root="data", transform=RandomPosterize(bits=8, p=1) ) b7p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=7, p=1) ) b6p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=6, p=1) ) b5p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=5, p=1) ) b4p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=4, p=1) ) b3p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=3, p=1) ) b2p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=2, p=1) ) b1p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=1, p=1) ) b0p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=0, p=1) ) bn1p1_data = OxfordIIITPet( # `n` is negative.  root="data", transform=RandomPosterize(bits=-1, p=1) ) bn10p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=-10, p=1) ) bn100p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=-100, p=1) ) b1p0_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=1, p=0) ) b1p05_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=1, p=0.5) # transform=RandomPosterize(bits=1) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=b8p1origin_data, main_title="b8p1origin_data") show_images1(data=b7p1_data, main_title="b7p1_data") show_images1(data=b6p1_data, main_title="b6p1_data") show_images1(data=b5p1_data, main_title="b5p1_data") show_images1(data=b4p1_data, main_title="b4p1_data") show_images1(data=b3p1_data, main_title="b3p1_data") show_images1(data=b2p1_data, main_title="b2p1_data") show_images1(data=b1p1_data, main_title="b1p1_data") show_images1(data=b0p1_data, main_title="b0p1_data") show_images1(data=bn1p1_data, main_title="bn1p1_data") show_images1(data=bn10p1_data, main_title="bn10p1_data") show_images1(data=bn100p1_data, main_title="bn100p1_data") print() show_images1(data=b1p0_data, main_title="b1p0_data") show_images1(data=b1p0_data, main_title="b1p0_data") show_images1(data=b1p0_data, main_title="b1p0_data") print() show_images1(data=b1p05_data, main_title="b1p05_data") show_images1(data=b1p05_data, main_title="b1p05_data") show_images1(data=b1p05_data, main_title="b1p05_data") print() show_images1(data=b1p1_data, main_title="b1p1_data") show_images1(data=b1p1_data, main_title="b1p1_data") show_images1(data=b1p1_data, main_title="b1p1_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, b=None, p=0): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) rp = RandomPosterize(bits=b, p=p) plt.imshow(X=rp(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="b8p1origin_data", b=8, p=1) show_images2(data=origin_data, main_title="b7p1_data", b=7, p=1) show_images2(data=origin_data, main_title="b6p1_data", b=6, p=1) show_images2(data=origin_data, main_title="b5p1_data", b=5, p=1) show_images2(data=origin_data, main_title="b4p1_data", b=4, p=1) show_images2(data=origin_data, main_title="b3p1_data", b=3, p=1) show_images2(data=origin_data, main_title="b2p1_data", b=2, p=1) show_images2(data=origin_data, main_title="b1p1_data", b=1, p=1) show_images2(data=origin_data, main_title="b0p1_data", b=0, p=1) show_images2(data=origin_data, main_title="bn1p1_data", b=-1, p=1) show_images2(data=origin_data, main_title="bn10p1_data", b=-10, p=1) show_images2(data=origin_data, main_title="bn100p1_data", b=-100, p=1) print() show_images2(data=origin_data, main_title="b1p0_data", b=1, p=0) show_images2(data=origin_data, main_title="b1p0_data", b=1, p=0) show_images2(data=origin_data, main_title="b1p0_data", b=1, p=0) print() show_images2(data=origin_data, main_title="b1p05_data", b=1, p=0.5) show_images2(data=origin_data, main_title="b1p05_data", b=1, p=0.5) show_images2(data=origin_data, main_title="b1p05_data", b=1, p=0.5) print() show_images2(data=origin_data, main_title="b1p1_data", b=1, p=1) show_images2(data=origin_data, main_title="b1p1_data", b=1, p=1) show_images2(data=origin_data, main_title="b1p1_data", b=1, p=1) 
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

Image description

Top comments (0)