DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandomAffine in PyTorch (5)

Buy Me a Coffee

*Memos:

RandomAffine() can do random rotation or random affine transformation for an image as shown below. *It's about shear argument (3):

from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomAffine origin_data = OxfordIIITPet( root="data", transform=None ) shear0_0_0_0origin_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[0, 0, 0, 0]) ) shear10_10_10_10_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[10, 10, 10, 10]) # transform=RandomAffine(degrees=[0, 0], shear=[-170, -170, -170, -170]) ) shear20_20_20_20_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[20, 20, 20, 20]) # transform=RandomAffine(degrees=[0, 0], shear=[-160, -160, -160, -160]) ) shear30_30_30_30_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[30, 30, 30, 30]) # transform=RandomAffine(degrees=[0, 0], shear=[-150, -150, -150, -150]) ) shear40_40_40_40_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[40, 40, 40, 40]) # transform=RandomAffine(degrees=[0, 0], shear=[-140, -140, -140, -140]) ) shear50_50_50_50_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[50, 50, 50, 50]) # transform=RandomAffine(degrees=[0, 0], shear=[-130, -130, -130, -130]) ) shear60_60_60_60_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[60, 60, 60, 60]) # transform=RandomAffine(degrees=[0, 0], shear=[-120, -120, -120, -120]) ) shear70_70_70_70_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[70, 70, 70, 70]) # transform=RandomAffine(degrees=[0, 0], shear=[-110, -110, -110, -110]) ) shear80_80_80_80_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[80, 80, 80, 80]) # transform=RandomAffine(degrees=[0, 0], shear=[-100, -100, -100, -100]) ) shear90_90_90_90_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[90, 90, 90, 90]) # transform=RandomAffine(degrees=[0, 0], shear=[-90, -90, -90, -90]) ) shearn10n10n10n10_data = OxfordIIITPet( # `n` is negative.  root="data", transform=RandomAffine(degrees=[0, 0], shear=[-10, -10, -10, -10]) # transform=RandomAffine(degrees=[0, 0], shear=[-170, -170, 170, 170]) ) shearn20n20n20n20_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-20, -20, -20, -20]) # transform=RandomAffine(degrees=[0, 0], shear=[160, 160, 160, 160]) ) shearn30n30n30n30_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-30, -30, -30, -30]) # transform=RandomAffine(degrees=[0, 0], shear=[150, 150, 150, 150]) ) shearn40n40n40n40_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-40, -40, -40, -40]) # transform=RandomAffine(degrees=[0, 0], shear=[140, 140, 140, 140]) ) shearn50n50n50n50_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-50, -50, -50, -50]) # transform=RandomAffine(degrees=[0, 0], shear=[130, 130, 130, 130]) ) shearn60n60n60n60_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-60, -60, -60, -60]) # transform=RandomAffine(degrees=[0, 0], shear=[120, 120, 120, 120]) ) shearn70n70n70n70_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-70, -70, -70, -70]) # transform=RandomAffine(degrees=[0, 0], shear=[110, 110, 110, 110]) ) shearn80n80n80n80_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-80, -80, -80, -80]) # transform=RandomAffine(degrees=[0, 0], shear=[100, 100, 100, 100]) ) shearn90n90n90n90_data = OxfordIIITPet( root="data", transform=RandomAffine(degrees=[0, 0], shear=[-90, -90, -90, -90]) # transform=RandomAffine(degrees=[0, 0], shear=[90, 90, 90, 90]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=shear0_0_0_0origin_data, main_title="shear0_0_0_0origin_data") show_images1(data=shear10_10_10_10_data, main_title="shear10_10_10_10_data") show_images1(data=shear20_20_20_20_data, main_title="shear20_20_20_20_data") show_images1(data=shear30_30_30_30_data, main_title="shear30_30_30_30_data") show_images1(data=shear40_40_40_40_data, main_title="shear40_40_40_40_data") show_images1(data=shear50_50_50_50_data, main_title="shear50_50_50_50_data") show_images1(data=shear60_60_60_60_data, main_title="shear60_60_60_60_data") show_images1(data=shear70_70_70_70_data, main_title="shear70_70_70_70_data") show_images1(data=shear80_80_80_80_data, main_title="shear80_80_80_80_data") show_images1(data=shear90_90_90_90_data, main_title="shear90_90_90_90_data") print() show_images1(data=shear0_0_0_0origin_data, main_title="shear0_0_0_0origin_data") show_images1(data=shearn10n10n10n10_data, main_title="shearn10n10n10n10_data") show_images1(data=shearn20n20n20n20_data, main_title="shearn20n20n20n20_data") show_images1(data=shearn30n30n30n30_data, main_title="shearn30n30n30n30_data") show_images1(data=shearn40n40n40n40_data, main_title="shearn40n40n40n40_data") show_images1(data=shearn50n50n50n50_data, main_title="shearn50n50n50n50_data") show_images1(data=shearn60n60n60n60_data, main_title="shearn60n60n60n60_data") show_images1(data=shearn70n70n70n70_data, main_title="shearn70n70n70n70_data") show_images1(data=shearn80n80n80n80_data, main_title="shearn80n80n80n80_data") show_images1(data=shearn90n90n90n90_data, main_title="shearn90n90n90n90_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, d=None, t=None, sc=None, sh=None, ip=InterpolationMode.NEAREST, f=0, c=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) ra = RandomAffine(degrees=d, translate=t, scale=sc, shear=sh, interpolation=ip, center=c, fill=f) plt.imshow(X=ra(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="shear0_0_0_0origin_data", d=[0, 0], sh=[0, 0, 0, 0]) show_images2(data=origin_data, main_title="shear10_10_10_10_data", d=[0, 0], sh=[10, 10, 10, 10]) show_images2(data=origin_data, main_title="shear20_20_20_20_data", d=[0, 0], sh=[20, 20, 20, 20]) show_images2(data=origin_data, main_title="shear30_30_30_30_data", d=[0, 0], sh=[30, 30, 30, 30]) show_images2(data=origin_data, main_title="shear40_40_40_40_data", d=[0, 0], sh=[40, 40, 40, 40]) show_images2(data=origin_data, main_title="shear50_50_50_50_data", d=[0, 0], sh=[50, 50, 50, 50]) show_images2(data=origin_data, main_title="shear60_60_60_60_data", d=[0, 0], sh=[60, 60, 60, 60]) show_images2(data=origin_data, main_title="shear70_70_70_70_data", d=[0, 0], sh=[70, 70, 70, 70]) show_images2(data=origin_data, main_title="shear80_80_80_80_data", d=[0, 0], sh=[80, 80, 80, 80]) show_images2(data=origin_data, main_title="shear90_90_90_90_data", d=[0, 0], sh=[90, 90, 90, 90]) print() show_images2(data=origin_data, main_title="shear0_0_0_0origin_data", d=[0, 0], sh=[0, 0, 0, 0]) show_images2(data=origin_data, main_title="shearn10n10n10n10_data", d=[0, 0], sh=[-10, -10, -10, -10]) show_images2(data=origin_data, main_title="shearn20n20n20n20_data", d=[0, 0], sh=[-20, -20, -20, -20]) show_images2(data=origin_data, main_title="shearn30n30n30n30_data", d=[0, 0], sh=[-30, -30, -30, -30]) show_images2(data=origin_data, main_title="shearn40n40n40n40_data", d=[0, 0], sh=[-40, -40, -40, -40]) show_images2(data=origin_data, main_title="shearn50n50n50n50_data", d=[0, 0], sh=[-50, -50, -50, -50]) show_images2(data=origin_data, main_title="shearn60n60n60n60_data", d=[0, 0], sh=[-60, -60, -60, -60]) show_images2(data=origin_data, main_title="shearn70n70n70n70_data", d=[0, 0], sh=[-70, -70, -70, -70]) show_images2(data=origin_data, main_title="shearn80n80n80n80_data", d=[0, 0], sh=[-80, -80, -80, -80]) show_images2(data=origin_data, main_title="shearn90n90n90n90_data", d=[0, 0], sh=[-90, -90, -90, -90]) 
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Top comments (0)