*Memos:
- My post explains RandAugment() about
num_ops
andfill
argument. - My post explains RandAugment() about
magnitude
andfill
argument. - My post explains RandAugment() about
num_magnitude_bins
andfill
argument. - My post explains TrivialAugmentWide().
- My post explains AutoAugment().
- My post explains AugMix() about no arguments and
full
argument. - My post explains OxfordIIITPet().
RandAugment() can randomly augment an image as shown below. *It's about no arguments and fill
argument:
*Memos:
- The 1st argument for initialization is
num_ops
(Optional-Default:2
-Type:int
). *It must be0 <= x
. - The 2nd argument for initialization is
magnitude
(Optional-Default:9
-Type:int
ortuple
/list
(int
orfloat
)): *Memos:- It must be
0 <= x
and0 < num_magnitude_bins
.
- It must be
- The 3rd argument for initialization is
num_magnitude_bins
(Optional-Default:31
-Type:int
). *It must be1 <= x
. - The 4th argument for initialization is
interpolation
(Optional-Default:InterpolationMode.NEAREST
-Type:InterpolationMode): *Memos:-
NEAREST
,NEAREST_EXACT
,BILINEAR
andBICUBIC
modes can be used. - My post explains InterpolationMode with and without anti-aliasing.
-
- The 5th argument for initialization is
fill
(Optional-Default:None
-Type:int
,float
ortuple
/list
(int
orfloat
)): *Memos:- It can change the background of an image. *The background can be seen when augmenting an image.
- A tuple/list must be the 1D with 1 or 3 elements.
- If all values are
x <= 0
, it's black. - If all values are
255 <= x
, it's white.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
/float
/bool
)): *Memos:- A tensor must be 3D or more D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandAugment from torchvision.transforms.functional import InterpolationMode ra = RandAugment() ra = RandAugment(num_ops=2, magnitude=9, num_magnitude_bins=31, interpolation=InterpolationMode.NEAREST, fill=None) ra # RandAugment(interpolation=InterpolationMode.NEAREST, # num_ops=2, magnitude=9, num_magnitude_bins=31) ra.num_ops # 2 ra.magnitude # 9 ra.num_magnitude_bins # 31 ra.interpolation # <InterpolationMode.NEAREST: 'nearest'> print(ra.fill) # None origin_data = OxfordIIITPet( root="data", transform=None ) noargs_data = OxfordIIITPet( # `noargs` is no arguments. root="data", transform=RandAugment() ) fgray_data = OxfordIIITPet( # `f` is fill. root="data", transform=RandAugment(fill=150) # transform=RandAugment(fill=[150]) ) fpurple_data = OxfordIIITPet( root="data", transform=RandAugment(fill=[160, 32, 240]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") show_images1(data=noargs_data, main_title="noargs_data") print() show_images1(data=fgray_data, main_title="fgray_data") show_images1(data=fpurple_data, main_title="fpurple_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, no=2, m=9, nmb=31, ip=InterpolationMode.NEAREST, f=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) ra = RandAugment(num_ops=no, magnitude=m, num_magnitude_bins=nmb, interpolation=ip, fill=f) plt.imshow(X=ra(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") show_images2(data=origin_data, main_title="noargs_data") print() show_images2(data=origin_data, main_title="fgray_data", f=150) show_images2(data=origin_data, main_title="fpurple_data", f=[160, 32, 240])
Top comments (0)