*My post explains torch.nan
and torch.inf
.
nan_to_num() can get the 0D or more D tensor of zero or more elements, replacing zero or more NaNs(Not a Numbers), positive infinities and negative infinities with zero or more zeros, the greatest finities and the least finities respectively(Default) or specified values from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
nan_to_num()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isnan
(Optional-Default:Zero
-Type:int
,float
orbool
). - The 3rd argument with
torch
or the 2nd argument with a tensor isposinf
(Optional-Default:The greatest finite
-Type:int
,float
orbool
). - The 4th argument with
torch
or the 2nd argument with a tensor isneginf
(Optional-Default:The lowest finite
-Type:int
,float
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - My post explains
out
argument.
-
import torch my_tensor = torch.tensor([-torch.inf, 7., -5., torch.inf, 8., torch.nan, torch.inf, torch.nan]) torch.nan_to_num(input=my_tensor) my_tensor.nan_to_num() # tensor([-3.4028e+38, 7.0000e+00, -5.0000e+00, 3.4028e+38, # 8.0000e+00, 0.0000e+00, 3.4028e+3, 0.0000e+00]) torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.) # tensor([9., 7., -5., -6., 8., 2., -6., 2.]) my_tensor = torch.tensor([[-torch.inf, 7., -5., torch.inf], [8., torch.nan, torch.inf, torch.nan]]) torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.) # tensor([[9., 7., -5., -6.], # [8., 2., -6., 2.]]) my_tensor = torch.tensor([[[-torch.inf, 7.], [-5., torch.inf]], [[8., torch.nan], [torch.inf, torch.nan]]]) torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.) # tensor([[[9., 7.], [-5., -6.]], # [[8., 2.], [-6., 2.]]]) my_tensor = torch.tensor([complex(-torch.inf, torch.inf), 7.+0.j, -5.+0.j, complex(torch.inf, -torch.inf), 8.+0.j, complex(torch.nan, torch.nan), complex(torch.inf), complex(torch.nan)]) torch.nan_to_num(input=my_tensor) # tensor([-3.4028e+38+3.4028e+38j, 7.0000e+00+0.0000e+00j, # -5.0000e+00+0.0000e+00j, 3.4028e+38-3.4028e+38j, # 8.0000e+00+0.0000e+00j, 0.0000e+00+0.0000e+00j, # 3.4028e+38+0.0000e+00j, 0.0000e+00+0.0000e+00j]) torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.) # tensor([9.-6.j, 7.+0.j, # -5.+0.j, -6.+9.j, # 8.+0.j, 2.+2.j, # -6.+0.j, 2.+0.j]) my_tensor = torch.tensor([[complex(-torch.inf, torch.inf), 7.+0.j, -5.+0.j, complex(torch.inf, -torch.inf)], [8.+0.j, complex(torch.nan, torch.nan), complex(torch.inf), complex(torch.nan)]]) torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.) # tensor([[9.-6.j, 7.+0.j, # -5.+0.j, -6.+9.j], # [8.+0.j, 2.+2.j, # -6.+0.j, 2.+0.j]]) my_tensor = torch.tensor([[[complex(-torch.inf, torch.inf), 7.+0.j], [-5.+0.j, complex(torch.inf, -torch.inf)]], [[8.+0.j, complex(torch.nan, torch.nan)], [complex(torch.inf), complex(torch.nan)]]]) torch.nan_to_num(input=my_tensor, nan=2., posinf=-6., neginf=9.) # tensor([[[9.-6.j, 7.+0.j], # [-5.+0.j, -6.+9.j]], # [[8.+0.j, 2.+2.j], # [-6.+0.j, 2.+0.j]]]) my_tensor = torch.tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) torch.nan_to_num(input=my_tensor, nan=2, posinf=-6, neginf=9) # tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) my_tensor = torch.tensor([[[True, False], [True, False]], [[False, True], [False, True]]]) torch.nan_to_num(input=my_tensor, nan=True, posinf=False, neginf=True) # tensor([[[True, False], [True, False]], # [[False, True], [False, True]]])
Top comments (0)