DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

isin in PyTorch

Buy Me a Coffee

*Memos:

isin() can check if the zero or more elements of the 1st 0D or more D tensor contain the same zero or more elements of the 2nd 0D or more D tensor, getting the 0D or more D tensor of zero or more boolean values as shown below:

*Memos:

  • isin() can be used with torch but not with a tensor.
  • The 1st argument with torch is elements(Required-Type:tensor or scalar of int or float). *You must use a scalar without elements=.
  • The 2nd argument with torch is test_elements(Required-Type:tensor or scalar of int or float). *You must use a scalar without test_elements=.
  • The 3rd argument with torch is assume_unique(Optional-Default=False-Type:bool). *If True, assumes both elements and test_elements contain unique elements, which can speed up the calculation.
  • The 4th argument with torch is invert(Optional-Default=False-Type:bool). *If True, inverts the boolean return tensor, resulting in True values for elements not in test_elements.
  • The combination of a scalar(elements) and a scalar (test_elements) cannot be used.
import torch tensor1 = torch.tensor([0, 1, 2, 3]) tensor2 = torch.tensor(2) torch.isin(elements=tensor1, test_elements=tensor2) torch.isin(tensor1, 2) # tensor([False, False, True, False])  torch.isin(elements=tensor1, test_elements=tensor2, assume_unique=True, invert=True) torch.isin(tensor1, 2, assume_unique=True, invert=True) # tensor([True, True, False, True])  torch.isin(elements=tensor2, test_elements=tensor1) torch.isin(tensor2, 2) torch.isin(2, test_elements=tensor1) torch.isin(2, test_elements=tensor2) # tensor(True)  torch.isin(elements=tensor2, test_elements=tensor1, assume_unique=True, invert=True) torch.isin(tensor2, 2, assume_unique=True, invert=True) torch.isin(2, test_elements=tensor1, assume_unique=True, invert=True) torch.isin(2, test_elements=tensor2, assume_unique=True, invert=True) # tensor(False)  tensor1 = torch.tensor([[[0., 1., 2.], [3., 4., 5.]], [[6., 7., 8.], [9., 10., 11.]]]) tensor2 = torch.tensor([[3., 5.], [7., 11.]]) torch.isin(elements=tensor1, test_elements=tensor2) # tensor([[[False, False, False], # [True, False, True]], # [[False, True, False], # [False, False, True]]])  torch.isin(elements=tensor1, test_elements=tensor2, assume_unique=True, invert=True) # tensor([[[True, True, True], # [False, True, False]], # [[True, False, True], # [True, True, False]]])  torch.isin(elements=tensor2, test_elements=tensor1) # tensor([[True, True], # [True, True]])  torch.isin(elements=tensor2, test_elements=tensor1, assume_unique=True, invert=True) # tensor([[False, False], # [False, False]])  torch.isin(tensor1, 3.) # tensor([[[False, False, False], # [True, False, False]], # [[False, False, False], # [False, False, False]]])  torch.isin(tensor1, 3., assume_unique=True, invert=True) # tensor([[[True, True, True], # [False, True, True]], # [[True, True, True], # [True, True, True]]])  torch.isin(tensor2, 3.) # tensor([[True, False], # [False, False]])  torch.isin(tensor2, 3., assume_unique=True, invert=True) # tensor([[False, True], # [True, True]])  torch.isin(3., test_elements=tensor1) torch.isin(3., test_elements=tensor2) # tensor(True)  torch.isin(3., test_elements=tensor1, assume_unique=True, invert=True) torch.isin(3., test_elements=tensor2, assume_unique=True, invert=True) # tensor(False) 
Enter fullscreen mode Exit fullscreen mode

Top comments (0)