*Memos:
hstack() can get the 1D or more D horizontally(column-wisely) stacked tensor of zero or more elements from the one or more 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
hstack()
can be used with torch but not with a tensor. - The 1st argument with
torch
istensors
(Required-Type:tuple
orlist
oftensor
ofint
,float
,complex
orbool
). *Basically, the size of tensors must be the same. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - My post explains
out
argument.
-
import torch tensor1 = torch.tensor(2) tensor2 = torch.tensor(7) tensor3 = torch.tensor(4) torch.hstack(tensors=(tensor1, tensor2, tensor3)) # tensor([2, 7, 4]) tensor1 = torch.tensor([2, 7, 4]) tensor2 = torch.tensor([8, 3, 2]) tensor3 = torch.tensor([5, 0, 8]) torch.hstack(tensors=(tensor1, tensor2, tensor3)) # tensor([2, 7, 4, 8, 3, 2, 5, 0, 8]) tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]]) tensor2 = torch.tensor([[5, 0, 8], [3, 6, 1]]) tensor3 = torch.tensor([[9, 4, 7], [1, 0, 5]]) torch.hstack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2, 7, 4, 5, 0, 8, 9, 4, 7], # [8, 3, 2, 3, 6, 1, 1, 0, 5]]) tensor1 = torch.tensor([[2., 7., 4.], [8., 3., 2.]]) tensor2 = torch.tensor([[5., 0., 8.], [3., 6., 1.]]) tensor3 = torch.tensor([[9., 4., 7.], [1., 0., 5.]]) torch.hstack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2., 7., 4., 5., 0., 8., 9., 4., 7.], # [8., 3., 2., 3., 6., 1., 1., 0., 5.]]) tensor1 = torch.tensor([[2.+0.j, 7.+0.j, 4.+0.j], [8.+0.j, 3.+0.j, 2.+0.j]]) tensor2 = torch.tensor([[5.+0.j, 0.+0.j, 8.+0.j], [3.+0.j, 6.+0.j, 1.+0.j]]) tensor3 = torch.tensor([[9.+0.j, 4.+0.j, 7.+0.j], [1.+0.j, 0.+0.j, 5.+0.j]]) torch.hstack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2.+0.j, 7.+0.j, 4.+0.j, 5.+0.j, 0.+0.j, # 8.+0.j, 9.+0.j, 4.+0.j, 7.+0.j], # [8.+0.j, 3.+0.j, 2.+0.j, 3.+0.j, 6.+0.j, # 1.+0.j, 1.+0.j, 0.+0.j, 5.+0.j]]) tensor1 = torch.tensor([[True, False, True], [False, True, False]]) tensor2 = torch.tensor([[False, True, False], [True, False, True]]) tensor3 = torch.tensor([[True, False, True], [False, True, False]]) torch.hstack(tensors=(tensor1, tensor2, tensor3)) # tensor([[True, False, True, False, True, False, True, False, True], # [False, True, False, True, False, True, False, True, False]]) tensor1 = torch.tensor([[[2, 7, 4]]]) tensor2 = torch.tensor([]) tensor3 = torch.tensor([[[5, 0, 8]]]) torch.hstack(tensors=(tensor1, tensor2, tensor3)) # tensor([[[2., 7., 4.], # [5., 0., 8.]]])
column_stack() can get the 2D or more D horizontally stacked tensor of zero or more elements from the one or more 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
column_stack()
can be used withtorch
but not with a tensor. - The 1st argument with
torch
istensors
(Required-Type:tuple
orlist
oftensor
ofint
,float
,complex
orbool
). *Basically, the size of tensors must be the same. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - My post explains
out
argument.
-
import torch tensor1 = torch.tensor(2) tensor2 = torch.tensor(7) tensor3 = torch.tensor(4) torch.column_stack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2, 7, 4]]) tensor1 = torch.tensor([2, 7, 4]) tensor2 = torch.tensor([8, 3, 2]) tensor3 = torch.tensor([5, 0, 8]) torch.column_stack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2, 8, 5], [7, 3, 0], [4, 2, 8]]) tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]]) tensor2 = torch.tensor([[5, 0, 8], [3, 6, 1]]) tensor3 = torch.tensor([[9, 4, 7], [1, 0, 5]]) torch.column_stack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2, 7, 4, 5, 0, 8, 9, 4, 7], # [8, 3, 2, 3, 6, 1, 1, 0, 5]]) tensor1 = torch.tensor([[2., 7., 4.], [8., 3., 2.]]) tensor2 = torch.tensor([[5., 0., 8.], [3., 6., 1.]]) tensor3 = torch.tensor([[9., 4., 7.], [1., 0., 5.]]) torch.column_stack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2., 7., 4., 5., 0., 8., 9., 4., 7.], # [8., 3., 2., 3., 6., 1., 1., 0., 5.]]) tensor1 = torch.tensor([[2.+0.j, 7.+0.j, 4.+0.j], [8.+0.j, 3.+0.j, 2.+0.j]]) tensor2 = torch.tensor([[5.+0.j, 0.+0.j, 8.+0.j], [3.+0.j, 6.+0.j, 1.+0.j]]) tensor3 = torch.tensor([[9.+0.j, 4.+0.j, 7.+0.j], [1.+0.j, 0.+0.j, 5.+0.j]]) torch.column_stack(tensors=(tensor1, tensor2, tensor3)) # tensor([[2.+0.j, 7.+0.j, 4.+0.j, 5.+0.j, 0.+0.j, # 8.+0.j, 9.+0.j, 4.+0.j, 7.+0.j], # [8.+0.j, 3.+0.j, 2.+0.j, 3.+0.j, 6.+0.j, # 1.+0.j, 1.+0.j, 0.+0.j, 5.+0.j]]) tensor1 = torch.tensor([[True, False, True], [False, True, False]]) tensor2 = torch.tensor([[False, True, False], [True, False, True]]) tensor3 = torch.tensor([[True, False, True], [False, True, False]]) torch.column_stack(tensors=(tensor1, tensor2, tensor3)) # tensor([[True, False, True, False, True, False, True, False, True], # [False, True, False, True, False, True, False, True, False]]) tensor1 = torch.tensor([[]]) tensor2 = torch.tensor([8]) tensor3 = torch.tensor([[]]) torch.column_stack(tensors=(tensor1, tensor2, tensor3)) # tensor([[8.]])
Top comments (0)