*Memos:
- My post explains gt() and lt().
- My post explains eq() and ne().
- My post explains isclose() and equal().
ge() can check if the zero or more elements of the 1st 0D or more D tensor are greater than or equal to the zero or more elements of the 2nd 0D or more D tensor element-wise, getting the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
ge()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isother
(Required-Type:tensor
orscalar
ofint
,float
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - My post explains
out
argument.
-
- greater_equal() is the alias of
ge()
.
import torch tensor1 = torch.tensor([5, 0, 3]) tensor2 = torch.tensor([3, 5, 4]) torch.ge(input=tensor1, other=tensor2) tensor1.ge(other=tensor2) # tensor([True, False, False]) torch.ge(input=tensor2, other=tensor1) # tensor([False, True, True]) tensor1 = torch.tensor([5, 0, 3]) tensor2 = torch.tensor([[3, 5, 4], [6, 3, 5]]) torch.ge(input=tensor1, other=tensor2) # tensor([[True, False, False], # [False, False, False]]) torch.ge(input=tensor2, other=tensor1) # tensor([[False, True, True], # [True, True, True]]) torch.ge(input=tensor1, other=3) # tensor([True, False, True]) torch.ge(input=tensor2, other=3) # tensor([[True, True, True], # [True, True, True]]) tensor1 = torch.tensor([5., 0., 3.]) tensor2 = torch.tensor([[3., 5., 4.], [6., 3., 5.]]) torch.ge(input=tensor1, other=tensor2) # tensor([[True, False, False], # [False, False, False]]) torch.ge(input=tensor1, other=3.) # tensor([True, False, True]) tensor1 = torch.tensor([True, False, True]) tensor2 = torch.tensor([[True, False, True], [False, True, False]]) torch.ge(input=tensor1, other=tensor2) # tensor([[True, True, True], # [True, False, True]]) torch.ge(input=tensor1, other=True) # tensor([True, False, True])
le() can check if the zero or more elements of the 1st 0D or more D tensor are less than or equal to the zero or more elements of the 2nd 0D or more D tensor element-wise, getting the 0D or more D tensor of zero or more element as shown below:
*Memos:
-
le()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isother
(Required-Type:tensor
orscalar
ofint
,float
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - My post explains
out
argument.
-
- less_equal() is the alias of
le()
.
import torch tensor1 = torch.tensor([5, 0, 3]) tensor2 = torch.tensor([3, 5, 4]) torch.le(input=tensor1, other=tensor2) tensor1.le(other=tensor2) # tensor([False, True, True]) torch.le(input=tensor2, other=tensor1) # tensor([True, False, False]) tensor1 = torch.tensor([5, 0, 3]) tensor2 = torch.tensor([[3, 5, 4], [6, 3, 5]]) torch.le(input=tensor1, other=tensor2) # tensor([[False, True, True], # [True, True, True]]) torch.le(input=tensor2, other=tensor1) # tensor([[True, False, False], # [False, False, False]]) torch.le(input=tensor1, other=3) # tensor([False, True, True]) torch.le(input=tensor2, other=3) # tensor([[True, False, False], # [False, True, False]]) tensor1 = torch.tensor([5., 0., 3.]) tensor2 = torch.tensor([[3., 5., 4.], [6., 3., 5.]]) torch.le(input=tensor1, other=tensor2) # tensor([[False, True, True], # [True, True, True]]) torch.le(input=tensor1, other=3.) # tensor([False, True, True]) tensor1 = torch.tensor([True, False, True]) tensor2 = torch.tensor([[True, False, True], [False, True, False]]) torch.le(input=tensor1, other=tensor2) # tensor([[True, True, True], # [False, True, False]]) torch.le(input=tensor1, other=True) # tensor([True, True, True])
Top comments (0)