*Memos:
- My post explains Matrix and Element-wise multiplication in PyTorch.
- My post explains Dot and Matrix-vector multiplication in PyTorch.
- My post explains matmul() and dot()
- My post explains mv(), mm() and bmm().
- My post explains add().
- My post explains sub() and mul().
- My post explains div().
- My post explains remainder() and fmod().
<Dot multiplication>
- dot() can multiply 1D tensors:
import torch tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([6, 3, 5]) # 1D tensor torch.dot(tensor1, tensor2) tensor1.dot(tensor2) # tensor(53)
- matmul() or
@
can multiply 1D or more D tensors:
import torch tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([6, 3, 5]) # 1D tensor torch.matmul(tensor1, tensor2) tensor1.matmul(tensor2) tensor1 @ tensor2 # tensor(53)
<Matrix-vector multiplication>
- mv() can multiply a 2D and 1D tensor:
import torch tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor tensor2 = torch.tensor([5, 0, 8]) # 1D tensor torch.mv(tensor1, tensor2) tensor1.mv(tensor2) # tensor([42, 56])
-
matmul()
or@
can multiply 1D or more D tensors:
import torch tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor tensor2 = torch.tensor([5, 0, 8]) # 1D tensor torch.matmul(tensor1, tensor2) tensor1.matmul(tensor2) tensor1 @ tensor2 # tensor([42, 56])
<Matrix multiplication>
- mm() can multiply 2D tensors:
import torch tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor tensor2 = torch.tensor([[5, 0, 8, 6], # 2D tensor [3, 6, 1, 7], [1, 4, 9, 2]]) torch.mm(tensor1, tensor2) tensor1.mm(tensor2) # tensor([[35, 58, 59, 69], [51, 26, 85, 73]])
- bmm() can multiply 3D tensors:
import torch tensor1 = torch.tensor([[[2, 7]], [[8, 3]]]) # 3D tensor tensor2 = torch.tensor([[[5, 9], [3, 6]], # 3D tensor [[7, 2], [1, 4]]]) torch.bmm(tensor1, tensor2) tensor1.bmm(tensor2) # tensor([[[31, 60]], [[59, 28]]])
-
matmul()
or@
can multiply 1D or more D tensors by dot or matrix multiplication:
import torch tensor1 = torch.tensor([[2, 7], [8, 3]]) # 2D tensor tensor2 = torch.tensor([[[[5, 9], [3, 6]], [[7, 2], [1, 4]]], [[[6, 0], [4, 6]], [[2, 9], [8, 1]]]]) # 4D tensor torch.matmul(tensor1, tensor2) tensor1.matmul(tensor2) tensor1 @ tensor2 # tensor([[[[31, 60], [49, 90]], [[21, 32], [59, 28]]], # [[[40, 42], [60, 18]], [[60, 25], [40, 75]]]])
<Element-wise calculation>
- mul() or
*
can do multiplication with 0D or more D tensors. *mul()
and multiply() are the same becausemultiply()
is the alias ofmul()
:
import torch tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([6, 3, 5]) # 1D tensor torch.mul(tensor1, tensor2) tensor1.mul(tensor2) tensor1 * tensor2 # tensor([12, 21, 20])
- div() or
/
can do division with 0D or more D tensors: *Memos: - divide() is the alias of
div()
. - true_divide() is the alias of
div()
withrounding_mode=None
. - floor_divide() is the same as
div()
withrounding_mode="trunc"
as long as I experimented:
import torch tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([6, 3, 5]) # 1D tensor torch.div(tensor1, tensor2) tensor1.div(tensor2) tensor1 / tensor2 # tensor([0.3333, 2.3333, 0.8000])
- remainder() or
%
can do modulo(mod) calculation with 0D or more D tensors:
import torch tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([6, 3, 5]) # 1D tensor torch.remainder(tensor1, tensor2) tensor1.remainder(tensor2) tensor1 % tensor2 # tensor([2, 1, 4])
- add() or
+
can do addition with 0D or more D tensors:
import torch tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([6, 3, 5]) # 1D tensor torch.add(tensor1, tensor2) tensor1.add(tensor2) tensor1 + tensor2 # tensor([8, 10, 9])
- sub() or
-
can do subtraction with 0D or more D tensors. *sub()
and subtract() are the aliases ofsub()
:
import torch tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([6, 3, 5]) # 1D tensor torch.subtract(tensor1, tensor2) tensor1.subtract(tensor2) tensor1 - tensor2 # tensor([-4, 4, -1])
Top comments (0)