DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

diagflat in PyTorch

Buy Me a Coffee

*Memos:

diagflat() can create the 2D tensor of zero or more elements on the diagonal and zero or more 0, 0., 0.+0.j or False elsewhere from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • diagflat() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is offset(Optional-Default:0-Type:int).
import torch my_tensor = torch.tensor([7, -4, 5]) torch.diagflat(input=my_tensor) my_tensor.diagflat() torch.diagflat(input=my_tensor, offset=0) # tensor([[7, 0, 0], # [0, -4, 0], # [0, 0, 5]])  torch.diagflat(input=my_tensor, offset=1) # tensor([[0, 7, 0, 0], # [0, 0, -4, 0], # [0, 0, 0, 5], # [0, 0, 0, 0]])  torch.diagflat(input=my_tensor, offset=-1) # tensor([[0, 0, 0, 0], # [7, 0, 0, 0], # [0, -4, 0, 0], # [0, 0, 5, 0]])  torch.diagflat(input=my_tensor, offset=2) # tensor([[0, 0, 7, 0, 0], # [0, 0, 0, -4, 0], # [0, 0, 0, 0, 5], # [0, 0, 0, 0, 0], # [0, 0, 0, 0, 0]])  torch.diagflat(input=my_tensor, offset=-2) # tensor([[0, 0, 0, 0, 0], # [0, 0, 0, 0, 0], # [7, 0, 0, 0, 0], # [0, -4, 0, 0, 0], # [0, 0, 5, 0, 0]])  my_tensor = torch.tensor([7., -4., 5.]) torch.diagflat(input=my_tensor) # tensor([[7., 0., 0.], # [0., -4., 0.], # [0., 0., 5.]])  my_tensor = torch.tensor([7.+0.j, -4.+0.j, 5.+0.j]) torch.diagflat(input=my_tensor) # tensor([[7.+0.j, 0.+0.j, 0.+0.j], # [0.+0.j, -4.+0.j, 0.+0.j], # [0.+0.j, 0.+0.j, 5.+0.j]])  my_tensor = torch.tensor([True, True, True]) torch.diagflat(input=my_tensor) # tensor([[True, False, False], # [False, True, False], # [False, False, True]])  my_tensor = torch.tensor([[7, -4, 5], [-6, -3, 8], [9, 1, -2]]) torch.diagflat(input=my_tensor) torch.diagflat(input=my_tensor, offset=0) # tensor([[7, 0, 0, 0, 0, 0, 0, 0, 0], # [0, -4, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 5, 0, 0, 0, 0, 0, 0], # [0, 0, 0, -6, 0, 0, 0, 0, 0], # [0, 0, 0, 0, -3, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 8, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 9, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 1, 0], # [0, 0, 0, 0, 0, 0, 0, 0, -2]])  torch.diagflat(input=my_tensor, offset=1) # tensor([[0, 7, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, -4, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 5, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, -6, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, -3, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 8, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 9, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, -2], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])  torch.diagflat(input=my_tensor, offset=-1) # tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [7, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0,-4, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 5, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, -6, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, -3, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 8, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 9, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, -2, 0]])  torch.diagflat(input=my_tensor, offset=2) # tensor([[0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])  torch.diagflat(input=my_tensor, offset=-2) # tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0]]) 
Enter fullscreen mode Exit fullscreen mode

Top comments (0)