DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

Compose in PyTorch

Buy Me a Coffee

*Memos:

Compose() can apply one or more transformations to an image as shown below:

*Memos:

  • The 1st argument for initialization is transforms(Required-Type:tuple/list(transform)): *Memos:
    • The transforms are applied from the 1st index in order.
    • It must be at least one transformation.
  • The 1st argument is img(Required-Type:PIL Image or tensor). *Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import Compose from torchvision.transforms.v2 import RandomInvert from torchvision.transforms.v2 import RandomVerticalFlip from torchvision.transforms.v2 import CenterCrop from torchvision.transforms.v2 import Pad c = Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1), CenterCrop(size=200), Pad(padding=20)]) c # Compose(RandomInvert(p=1) # RandomVerticalFlip(p=1) # CenterCrop(size=(200, 200)) # Pad(padding=20, fill=0, padding_mode=constant))  c.transforms # [RandomInvert(p=1), # RandomVerticalFlip(p=1), # CenterCrop(size=(200, 200)), # Pad(padding=20, fill=0, padding_mode=constant)]  origin_data = OxfordIIITPet( root="data", transform=None ) # `ri` is RandomInvert() and `rv` is RandomVerticalFlip(). # `cc` is CenterCrop() and `pad` is Pad(). ri_rv_cc_pad_data = OxfordIIITPet( root="data", transform=Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1), CenterCrop(size=200), Pad(padding=20)]) ) ri_rv_pad_cc_data = OxfordIIITPet( root="data", transform=Compose(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1), Pad(padding=20), CenterCrop(size=200)]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=ri_rv_cc_pad_data, main_title="ri_rv_cc_pad_data") show_images1(data=ri_rv_pad_cc_data, main_title="ri_rv_pad_cc_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, t=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) c = Compose(transforms=t) plt.imshow(X=c(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="ri_rv_cc_pad_data", t=[RandomInvert(p=1), RandomVerticalFlip(p=1), CenterCrop(size=200), Pad(padding=20)]) show_images2(data=origin_data, main_title="ri_rv_pad_cc_data", t=[RandomInvert(p=1), RandomVerticalFlip(p=1), Pad(padding=20), CenterCrop(size=200)]) 
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Top comments (0)