*Memos:
- My post explains ColorJitter() about
brightness
argument. - My post explains ColorJitter() about
contrast
argument. - My post explains ColorJitter() about
saturation
argument.
ColorJitter() can randomly change the brightness, contrast, saturation and hue of an image as shown below. *It's about hue
argument:
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter origin_data = OxfordIIITPet( root="data", transform=None ) hue0_0origin_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[0, 0]) # transform=ColorJitter(hue=0) # transform=ColorJitter(hue=None) ) huen05_05_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[-0.5, 0.5]) # transform=ColorJitter(hue=0.5) ) huen05_0_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[-0.5, 0]) ) hue0_05_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[0, 0.5]) ) hue01_01_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[0.1, 0.1]) ) hue02_02_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[0.2, 0.2]) ) hue03_03_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[0.3, 0.3]) ) hue04_04_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[0.4, 0.4]) ) hue05_05_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[0.5, 0.5]) ) huen01n01_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[-0.1, -0.1]) ) huen02n02_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[-0.2, -0.2]) ) huen03n03_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[-0.3, -0.3]) ) huen04n04_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[-0.4, -0.4]) ) huen05n05_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=[-0.5, -0.5]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=hue0_0origin_data, main_title="hue0_0origin_data") show_images1(data=huen05_05_data, main_title="huen05_05_data") show_images1(data=huen05_0_data, main_title="huen05_0_data") show_images1(data=hue0_05_data, main_title="hue0_05_data") print() show_images1(data=hue0_0origin_data, main_title="hue0_0origin_data") show_images1(data=hue01_01_data, main_title="hue01_01_data") show_images1(data=hue02_02_data, main_title="hue02_02_data") show_images1(data=hue03_03_data, main_title="hue03_03_data") show_images1(data=hue04_04_data, main_title="hue04_04_data") show_images1(data=hue05_05_data, main_title="hue05_05_data") print() show_images1(data=hue0_0origin_data, main_title="hue0_0origin_data") show_images1(data=huen01n01_data, main_title="huen01n01_data") show_images1(data=huen02n02_data, main_title="huen02n02_data") show_images1(data=huen03n03_data, main_title="huen03n03_data") show_images1(data=huen04n04_data, main_title="huen04n04_data") show_images1(data=huen05n05_data, main_title="huen05n05_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, b=None, c=None, s=None, h=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if main_title != "origin_data": for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) cj = ColorJitter(brightness=b, contrast=c, saturation=s, hue=h) plt.imshow(X=cj(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="hue0_0origin_data", h=[0, 0]) show_images2(data=origin_data, main_title="huen05_05_data", h=[-0.5, 0.5]) # ↑ show_images2(data=origin_data, main_title="huen05_data", h=0.5) show_images2(data=origin_data, main_title="huen05_0_data", h=[-0.5, 0]) show_images2(data=origin_data, main_title="hue0_05_data", h=[0, 0.5]) print() show_images2(data=origin_data, main_title="hue0_0origin_data", h=[0, 0]) show_images2(data=origin_data, main_title="hue01_01_data", h=[0.1, 0.1]) show_images2(data=origin_data, main_title="hue02_02_data", h=[0.2, 0.2]) show_images2(data=origin_data, main_title="hue03_03_data", h=[0.3, 0.3]) show_images2(data=origin_data, main_title="hue04_04_data", h=[0.4, 0.4]) show_images2(data=origin_data, main_title="hue05_05_data", h=[0.5, 0.5]) print() show_images2(data=origin_data, main_title="hue0_0origin_data", h=[0, 0]) show_images2(data=origin_data, main_title="huen01n01_data", h=[-0.1, -0.1]) show_images2(data=origin_data, main_title="huen02n02_data", h=[-0.2, -0.2]) show_images2(data=origin_data, main_title="huen03n03_data", h=[-0.3, -0.3]) show_images2(data=origin_data, main_title="huen04n04_data", h=[-0.4, -0.4]) show_images2(data=origin_data, main_title="huen05n05_data", h=[-0.5, -0.5])
Top comments (0)