*Memos:
- My post explains where().
- My post explains count_nonzero().
argwhere() can get the 2D tensor of the zero or more indices of non-zero elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
argwhere()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
).
import torch my_tensor = torch.tensor(5) torch.argwhere(input=my_tensor) my_tensor.argwhere() # tensor([], size=(1, 0), dtype=torch.int64) my_tensor = torch.tensor([5, 0, 4, 0, 3, 1]) torch.argwhere(input=my_tensor) # tensor([[0], [2], [4], [5]]) my_tensor = torch.tensor([5., 0., 4., 0., 3., 1]) torch.argwhere(input=my_tensor) # tensor([[0], [2], [4], [5]]) my_tensor = torch.tensor([5.+0.j, 0.+0.j, 4.+0.j, 0.+0.j, 3.+0.j, 1.+0.j]) torch.argwhere(input=my_tensor) # tensor([[0], [2], [4], [5]]) my_tensor = torch.tensor([True, False, True, False, True, False]) torch.argwhere(input=my_tensor) # tensor([[0], [2], [4]]) my_tensor = torch.tensor([[5, 0, 4], [0, 3, 1]]) torch.argwhere(input=my_tensor) # tensor([[0, 0], [0, 2], [1, 1], [1, 2]]) my_tensor = torch.tensor([[[5, 0, 4], [0, 3, 1]], [[0, 7, 0], [0, 6, 8]]]) torch.argwhere(input=my_tensor) # tensor([[0, 0, 0], # [0, 0, 2], # [0, 1, 1], # [0, 1, 2], # [1, 0, 1], # [1, 1, 1], # [1, 1, 2]])
nonzero() can get the 2D tensor of the zero or more indices of non-zero elements or the one or more 1D tensors of the zero or more indices of non-zero elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
nonzero()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - There is
as_tuple
argument withtorch
or a tensor(Optional-Default:False
-Type:bool
): *Memos:- If
as_tuple
isTrue
, the tuple of zero or more 1D tensors is returned.
- If
- There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - My post explains
out
argument.
-
import torch my_tensor = torch.tensor(5) torch.nonzero(input=my_tensor) my_tensor.nonzero() # tensor([], size=(1, 0), dtype=torch.int64) torch.nonzero(input=my_tensor, as_tuple=True) # (tensor([0]),) my_tensor = torch.tensor([5, 0, 4, 0, 3, 1]) torch.nonzero(input=my_tensor) my_tensor.nonzero() # tensor([[0], [2], [4], [5]]) torch.nonzero(input=my_tensor, as_tuple=True) # (tensor([0, 2, 4, 5]),) my_tensor = torch.tensor([5., 0., 4., 0., 3., 1]) torch.nonzero(input=my_tensor) # tensor([[0], [2], [4], [5]]) my_tensor = torch.tensor([5.+0.j, 0.+0.j, 4.+0.j, 0.+0.j, 3.+0.j, 1.+0.j]) torch.nonzero(input=my_tensor) # tensor([[0], [2], [4], [5]]) my_tensor = torch.tensor([True, False, True, False, True, False]) torch.nonzero(input=my_tensor) # tensor([[0], [2], [4]]) my_tensor = torch.tensor([[5, 0, 4], [0, 3, 1]]) torch.nonzero(input=my_tensor) # tensor([[0, 0], [0, 2], [1, 1], [1, 2]]) torch.nonzero(input=my_tensor, as_tuple=True) # (tensor([0, 0, 1, 1]), # tensor([0, 2, 1, 2])) my_tensor = torch.tensor([[[5, 0, 4], [0, 3, 1]], [[0, 7, 0], [0, 6, 8]]]) torch.nonzero(input=my_tensor) # tensor([[0, 0, 0], # [0, 0, 2], # [0, 1, 1], # [0, 1, 2], # [1, 0, 1], # [1, 1, 1], # [1, 1, 2]]) torch.nonzero(input=my_tensor, as_tuple=True) # (tensor([0, 0, 0, 0, 1, 1, 1]), # tensor([0, 0, 1, 1, 0, 1, 1]), # tensor([0, 2, 1, 2, 1, 1, 2]))
Top comments (0)