DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

adjoint, mH and mT in PyTorch

Buy Me a Coffee

*Memos:

adjoint() or mH can get the view of the 2D or more D transposed and conjugated tensor of zero or more elements without losing data from the 2D or more D tensor of zero or more elements as shown below:

  • adjoint() can be used with torch or a tensor while mH can be used with a tensor but not with torch.
  • For adjoint(), the 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • For mH, using a tensor(Required-Type:tensor of int, float, complex or bool).
  • adjoint() is equivalent to mH, equivalent to transpose(-2, -1) for an int, float or bool tensor and equivalent to transpose(-2, -1).conj() for a complex tensor.
  • adjoint() or mH can also get the 0D tensor of zero or more elements but it's deprecated.
import torch my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) torch.adjoint(input=my_tensor) my_tensor.adjoint() my_tensor.mH # tensor([[0, 3, 6, 9], # [1, 4, 7, 10], # [2, 5, 8, 11]])  my_tensor = torch.tensor([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]) torch.adjoint(input=my_tensor) my_tensor.mH # tensor([[[0, 3], [1, 4], [2, 5]], # [[6, 9], [7, 10], [8, 11]], # [[12, 15], [13, 16], [14, 17]], # [[18, 21], [19, 22], [20, 23]]])  my_tensor = torch.tensor([[[0., 1., 2.], [3., 4., 5.]], [[6., 7., 8.], [9., 10., 11.]], [[12., 13., 14.], [15., 16., 17.]], [[18., 19., 20.], [21., 22., 23.]]]) torch.adjoint(input=my_tensor) my_tensor.mH # tensor([[[0., 3.], [1., 4.], [2., 5.]], # [[6., 9.], [7., 10.], [8., 11.]], # [[12., 15.], [13., 16.], [14., 17.]], # [[18., 21.], [19., 22.], [20., 23.]]])  my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j], [3.+0.j, 4.+0.j, 5.+0.j]], [[6.+0.j, 7.+0.j, 8.+0.j], [9.+0.j, 10.+0.j, 11.+0.j]], [[12.+0.j, 13.+0.j, 14.+0.j], [15.+0.j, 16.+0.j, 17.+0.j]], [[18.+0.j, 19.+0.j, 20.+0.j], [21.+0.j, 22.+0.j, 23.+0.j]]]) torch.adjoint(input=my_tensor) my_tensor.mH # tensor([[[0.-0.j, 3.-0.j], [1.-0.j, 4.-0.j], [2.-0.j, 5.-0.j]], # [[6.-0.j, 9.-0.j], [7.-0.j, 10.-0.j], [8.-0.j, 11.-0.j]], # [[12.-0.j, 15.-0.j], [13.-0.j, 16.-0.j], [14.-0.j, 17.-0.j]], # [[18.-0.j, 21.-0.j], [19.-0.j, 22.-0.j], [20.-0.j, 23.-0.j]]])  my_tensor = torch.tensor([[[True, False, True], [True, False, True]], [[False, True, False], [False, True, False]], [[True, False, True], [True, False, True]], [[False, True, False], [False, True, False]]]) torch.adjoint(input=my_tensor) my_tensor.mH # tensor([[[True, True], [False, False], [True, True]], # [[False, False], [True, True], [False, False]], # [[True, True], [False, False], [True, True]], # [[False, False], [True, True], [False, False]]]) 
Enter fullscreen mode Exit fullscreen mode

mT can get the view of the 2D or more D transposed tensor of zero or more elements without losing data from the 2D or more D tensor of zero or more elements as shown below:

  • mT can be used with a tensor but not with torch.
  • Using a tensor(Required-Type:tensor of int, float, complex or bool).
  • mT can also get the 0D tensor of zero or more elements but it's deprecated.
import torch my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) my_tensor.mT # tensor([[0, 3, 6, 9], # [1, 4, 7, 10], # [2, 5, 8, 11]])  my_tensor = torch.tensor([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]) my_tensor.mT # tensor([[[0, 3], [1, 4], [2, 5]], # [[6, 9], [7, 10], [8, 11]], # [[12, 15], [13, 16], [14, 17]], # [[18, 21], [19, 22], [20, 23]]])  my_tensor = torch.tensor([[[0., 1., 2.], [3., 4., 5.]], [[6., 7., 8.], [9., 10., 11.]], [[12., 13., 14.], [15., 16., 17.]], [[18., 19., 20.], [21., 22., 23.]]]) my_tensor.mT # tensor([[[0., 3.], [1., 4.], [2., 5.]], # [[6., 9.], [7., 10.], [8., 11.]], # [[12., 15.], [13., 16.], [14., 17.]], # [[18., 21.], [19., 22.], [20., 23.]]])  my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j], [3.+0.j, 4.+0.j, 5.+0.j]], [[6.+0.j, 7.+0.j, 8.+0.j], [9.+0.j, 10.+0.j, 11.+0.j]], [[12.+0.j, 13.+0.j, 14.+0.j], [15.+0.j, 16.+0.j, 17.+0.j]], [[18.+0.j, 19.+0.j, 20.+0.j], [21.+0.j, 22.+0.j, 23.+0.j]]]) my_tensor.mT # tensor([[[0.+0.j, 3.+0.j], [ 1.+0.j, 4.+0.j], [2.+0.j, 5.+0.j]], # [[6.+0.j, 9.+0.j], [7.+0.j, 10.+0.j], [8.+0.j, 11.+0.j]], # [[12.+0.j, 15.+0.j], [13.+0.j, 16.+0.j], [14.+0.j, 17.+0.j]], # [[18.+0.j, 21.+0.j], [19.+0.j, 22.+0.j], [20.+0.j, 23.+0.j]]])  my_tensor = torch.tensor([[[True, False, True], [True, False, True]], [[False, True, False], [False, True, False]], [[True, False, True], [True, False, True]], [[False, True, False], [False, True, False]]]) my_tensor.mT # tensor([[[True, True], [False, False], [True, True]], # [[False, False], [True, True], [False, False]], # [[True, True], [False, False], [True, True]], # [[False, False], [True, True], [False, False]]]) 
Enter fullscreen mode Exit fullscreen mode

Top comments (0)