温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python如何实现KNN近邻算法

发布时间:2022-02-28 15:11:59 来源:亿速云 阅读:181 作者:iii 栏目:开发技术

本篇内容主要讲解“Python如何实现KNN近邻算法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python如何实现KNN近邻算法”吧!

一、KNN概述

简单来说,K-近邻算法采用测量不同特征值之间的距离方法进行分类

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称2型

工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系(训练集)。输入没有标签的新数据之后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签(测试集)。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处。(通常k不大于20)

二、使用Python导入数据

我们先写入一段代码

from numpy import *	# 导入numpy模块 import operator	# 导入operator模块 def createDataSet():	# 创建数据集函数	# 构建一个数组存放特征值     group = array(         [[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]     )     # 构建一个数组存放目标值     labels = ['A', 'A', 'B', 'B']     return group, labels

此处稍微介绍一下numpy这个包吧

三、numpy.array()

NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。
在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩
线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。

四、实施KNN分类算法

依照KNN算法,我们依次来

先准备好四个需要的数据

  • inX:用于分类的输入向量inX

  • dataSet:输入的训练样本集dataSet

  • labels:标签向量labels(元素数目和矩阵dataSet的行数相同)

  • k:选择最近邻居的数目

五、计算已知类别数据集中的点与当前点之间的距离

六、完整代码

# 返回矩阵的行数 dataSetSize = dataSet.shape[0] # 列数不变,行数变成dataSetSize列 diffMat = tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5

第一行

# 返回矩阵的行数 dataSetSize = dataSet.shape[0] # 以第一步的数据为例 answer:4	# 4行

第二行

inX = [1. , 0.] # 列数不变,行数变成dataSetSize列 diffMat = tile(inX, (dataSetSize, 1)) - dataSet # tile(inX, (dataSetSize, 1)) inX = [	[1. , 0.],	[1. , 0.],	[1. , 0.],	[1. , 0.] ] # inX - dataSet两个矩阵相减(行列相等相加相减才有意义) dataSet = [	[1. , 1.1],         [1. , 1. ],         [0. , 0. ],         [0. , 0.1] ] diffMat = [	[0. , -1.1],	[0. , -1.],	[1. , 0.],	[1. , -0.1] ]

第三行

# 求平方差 sqDiffMat = diffMat * 2

第四行

# 计算矩阵中每一行元素之和 # 此时会形成一个多行1列的矩阵 sqDistances = sqDiffMat.sum(axis=1)

第五行

# 开根号 distances = sqDistances**0.5

按照距离递增次序排序

# 对数组进行排序 sortedDistIndicies = distances.argsort()

选择与当前点距离最小的k个点

classCount = {}	# 新建一个字典 # 确定前k个距离最小元素所在的主要分类 for i in range(k):	# voteIlabel的取值是labels中sortedDistIndicies[i]的位置	voteIlabel = labels[sortedDistIndicies[i]]	classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1

确定前k个点所在类别的出现概率

# 排序 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)

###11# 返回前k个点出现频率最高的类别作为当前点的预测分类

return sortedClassCount[0][0]

刚刚试一试C++的版本…小心,救命

#include <iostream> #include <vector> #include <algorithm> #include <cmath> #include <map> int sum_vector(std::vector<int>& v) {	int sum = 0;	for (int i = 0; i < v.size(); ++i) {	sum = v[i] + sum;	}	return sum; } int knn(int k) {	using std::cout;	using std::endl;	using std::vector;	vector<vector<int>> x;	vector<int> x_sample = {2, 3, 4};	for (int i = 0; i < 4; ++i) {	x.push_back(x_sample);	}	vector<int> y = {1, 1, 1, 1};	int dataSetSize = x.size();	vector<int> x_test = {4, 3, 4};	vector<vector<int>> x_test_matrix;	for (int i = 0; i < dataSetSize; ++i) {	x_test_matrix.push_back(x_test);	}	vector<int> v_total;	for (int i = 0; i < dataSetSize; ++i) {	for (int j = 0; j < x_test_matrix[i].size(); ++j) {	x_test_matrix[i][j] = x_test_matrix[i][j] - x[i][j];	x_test_matrix[i][j] = x_test_matrix[i][j] * 2;	}	int sum_vec = sum_vector(x_test_matrix[i]);	v_total.push_back(sqrt(sum_vec));	}	sort(v_total.begin(), v_total.end());	std::map<int, int> mp;	for (int i = 0; i < k; ++i) {	int label = y[v_total[i]];	mp[label] += 1;	}	int max_end_result = 0;	for (std::map<int, int>::iterator it = mp.begin(); it != mp.end(); it++) {	if (it->first > max_end_result) {	max_end_result = it->first;	}	}	return max_end_result; } int main() {	int k = 12;	int value = knn(k);	std::cout << "result: " << std::endl;	return 0; }

七、数据处理、分析、测试

处理excel和txt数据

excel数据是矩阵数据,可直接使用,在此不做处理。

文本txt数据需要一些数据处理

def file2matrix(filename):	fr = open(filename)	# 读取行数据直到尾部	arrayOLines = fr.readlines()	# 获取行数	numberOfLines = len(arrayOLines)	# 创建返回shape为(numberOfLines, 3)numpy矩阵	returnMat = zeros((numberOfLines, 3))	classLabelVector = []	index = 0	for line in arrayOLines:	# 去除首尾的回车符	line = line.strip()	# 以tab字符'	'为符号进行分割字符串	listFromLine = line.split('	')	# 选取前3个元素,把他们存储到特征矩阵中	returnMat[index, :] = listFromLine[0: 3]	# 把目标变量放到目标数组中	classLabelVector.append(int(listFromLine[-1]))	index += 1	return returnMat, classLabelVector

数据归一化和标准化

在数值当中,会有一些数据大小参差不齐,严重影响数据的真实性,因此,对数据进行归一化和标准化是使得数据取值在一定的区间,具有更好的拟合度。

例如归一化就是将数据取值范围处理为0到1或者-1到1之间

# max:最大特征值 # min:最小特征值 newValue = (oldValue - min)/(max-min)

写个函数

def autoNorm(dataSet):	# min(0)返回该矩阵中每一列的最小值	minVals = dataSet.min(0)	# max(0)返回该矩阵中每一列的最大值	maxVals = dataSet.max(0)	# 求出极值	ranges = maxVals - minVals	# 创建一个相同行列的0矩阵	normDataSet = zeros(shape(dataSet))	# 得到行数	m = dataSet.shape[0]	# 得到一个原矩阵减去m倍行1倍列的minVals	normDataSet = dataSet - tile(minVlas, (m,1))	# 特征值相除	normDataSet = normDataSet/tile(ranges, (m, 1))	return normDataSet, ranges, minVals

归一化的缺点:如果异常值就是最大值或者最小值,那么归一化也就没有了保证(稳定性较差,只适合传统精确小数据场景)

标准化可查

八、鸢尾花数据测试

既然已经了解其内置的算法了,那么便调库来写一个吧

from sklearn.datasets import load_iris      # 导入内置数据集 from sklearn.model_selection import train_test_split        # 提供数据集分类方法 from sklearn.preprocessing import StandardScaler        # 标准化 from sklearn.neighbors import KNeighborsClassifier      # KNN def knn_iris():     # 获得鸢尾花数据集     iris = load_iris()     # 获取数据集     # random_state为随机数种子,一个数据集中相等的行不能大于6     x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)     # 特征工程:标准化     transfer = StandardScaler()     # 训练集标准化     x_train = transfer.fit_transform(x_train)     # 测试集标准化     x_test = transfer.transform(x_test)     # 设置近邻个数     estimator = KNeighborsClassifier(n_neighbors=3)     # 训练集测试形成模型     estimator.fit(x_train, y_train)     # 模型预估     # 根据预测特征值得出预测目标值     y_predict = estimator.predict(x_test)     print("y_predict:  ", y_predict)     # 得出预测目标值和真实目标值之间是否相等     print("直接比对真实值和预测值: ", y_test == y_predict)     # 计算准确率     score = estimator.score(x_test, y_test)     print("准确率为: ", score) def main():     knn_iris() if __name__ == '__main__':     main()

到此,相信大家对“Python如何实现KNN近邻算法”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI