温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python物体标识怎么实现

发布时间:2021-09-07 11:33:05 来源:亿速云 阅读:221 作者:小新 栏目:编程语言

这篇文章主要为大家展示了“python物体标识怎么实现”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“python物体标识怎么实现”这篇文章吧。

1、读取彩色图像进行灰度化和二值化。

def get_binary_img(img):     # gray img to bin image     bin_img = np.zeros(shape=(img.shape), dtype=np.uint8)     h = img.shape[0]     w = img.shape[1]     for i in range(h):         for j in range(w):             bin_img[i][j] = 255 if img[i][j] < 255 else 0     return bin_img # 调用 file_name = "./test.bmp" img = cv2.imread(file_name) # 灰度化 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 bin_img = get_binary_img(gray_img)

2、目标标志,每个物体的像素值是该物体的标志,为计算面积打下基础。

# 标记目标 def label_region(bin_img,width,height):     visited = np.zeros(shape=bin_img.shape,dtype=np.uint8)     label_img = np.zeros(shape=bin_img.shape, dtype=np.uint8)     label = 0     for i in range(height):         for j in range(width):             if bin_img[i][j] == 255 and visited[i][j]==0 : //找到种子点                 # visit                 visited[i][j] = 1                 label += 1                 label_img[i][j] = label                 # label                 label_from_seed(bin_img, visited, i, j, label, label_img)     return label_img # 区域增长法进行标记 def label_from_seed(bin_img,visited,i,j,label,out_img):     directs = [(-1, -1), (0, -1), (1, -1), (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0)]     seeds = [(i,j)]     height = bin_img.shape[0]     width = bin_img.shape[1]     while len(seeds):         seed = seeds.pop(0)         i = seed[0]         j = seed[1]         if visited[i][j] == 0:             visited[i][j] = 1             out_img[i][j] = label           # 以(i,j)为起点进行标记         for direct in directs:             cur_i = i + direct[0]             cur_j = j + direct[1]              # 非法             if cur_i < 0 or cur_j < 0 or cur_i >= height or cur_j >= width:                 continue              # 没有访问过             if visited[cur_i][cur_j] == 0 and bin_img[cur_i][cur_j] == 255:                 visited[cur_i][cur_j] = 1                 out_img[cur_i][cur_j] = label                 seeds.append((cur_i,cur_j))

3、通过遍历标记的图像,统计每个编号中出现的像素数,可以得到不同区域的面积大小。

def get_region_area(label_img,label):     count = { key: 0  for key in range(label + 1)}     start_pt = {key:(0,0) for key in range(label + 1)}     height = label_img.shape[0]     width  = label_img.shape[1]     for i in range(height):         for j in range(width):             key = label_img[i][j]             count[key] += 1             if count[key] == 1:                 start_pt[key] = (j,i)     return count,start_pt

以上是“python物体标识怎么实现”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI