温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Flink的CoGroup如何使用

发布时间:2021-12-31 10:15:13 来源:亿速云 阅读:679 作者:iii 栏目:大数据

这篇文章主要介绍“Flink的CoGroup如何使用”,在日常操作中,相信很多人在Flink的CoGroup如何使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Flink的CoGroup如何使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

CoGroup算子:将两个数据流按照key进行group分组,并将数据流按key进行分区的处理,最终合成一个数据流(与join有区别,不管key有没有关联上,最终都会合并成一个数据流)

示例环境

java.version: 1.8.x flink.version: 1.11.1

示例数据源 (项目码云下载)

Flink 系例 之 搭建开发环境与数据

CoGroup.java

package com.flink.examples.functions; import com.flink.examples.DataSource; import com.google.gson.Gson; import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner; import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.api.common.functions.CoGroupFunction; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.api.java.tuple.Tuple3; import org.apache.flink.streaming.api.TimeCharacteristic; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.util.Collector; import java.time.Duration; import java.util.Arrays; import java.util.List; /**  * @Description CoGroup算子:将两个数据流按照key进行group分组,并将数据流按key进行分区的处理,最终合成一个数据流(与join有区别,不管key有没有关联上,最终都会合并成一个数据流)  */ public class CoGroup {     /**      * 两个数据流集合,对相同key进行内联,分配到同一个窗口下,合并并打印      * @param args      * @throws Exception      */     public static void main(String[] args) throws Exception {         final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();         env.setParallelism(1);         env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);         //watermark 自动添加水印调度时间         //env.getConfig().setAutoWatermarkInterval(200);         List<Tuple3<String, String, Integer>> tuple3List1 = DataSource.getTuple3ToList();         List<Tuple3<String, String, Integer>> tuple3List2 = Arrays.asList(                 new Tuple3<>("伍七", "girl", 18),                 new Tuple3<>("吴八", "man", 30)         );         //Datastream 1         DataStream<Tuple3<String, String, Integer>> dataStream1 = env.fromCollection(tuple3List1)                 //添加水印窗口,如果不添加,则时间窗口会一直等待水印事件时间,不会执行apply                 .assignTimestampsAndWatermarks(WatermarkStrategy                         .<Tuple3<String, String, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(2))                         .withTimestampAssigner((element, timestamp) -> System.currentTimeMillis()));         //Datastream 2         DataStream<Tuple3<String, String, Integer>> dataStream2 = env.fromCollection(tuple3List2)                 //添加水印窗口,如果不添加,则时间窗口会一直等待水印事件时间,不会执行apply                 .assignTimestampsAndWatermarks(WatermarkStrategy                         .<Tuple3<String, String, Integer>>forBoundedOutOfOrderness(Duration.ofSeconds(2))                         .withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, String, Integer>>() {                             @Override                             public long extractTimestamp(Tuple3<String, String, Integer> element, long timestamp) {                                 return System.currentTimeMillis();                             }                         })                 );         //对dataStream1和dataStream2两个数据流进行关联,没有关联也保留         //Datastream 3         DataStream<String> newDataStream = dataStream1.coGroup(dataStream2)                 .where(new KeySelector<Tuple3<String, String, Integer>, String>() {                     @Override                     public String getKey(Tuple3<String, String, Integer> value) throws Exception {                         return value.f1;                     }                 })                 .equalTo(t3->t3.f1)                 .window(TumblingEventTimeWindows.of(Time.seconds(1)))                 .apply(new CoGroupFunction<Tuple3<String, String, Integer>, Tuple3<String, String, Integer>, String>() {                     @Override                     public void coGroup(Iterable<Tuple3<String, String, Integer>> first, Iterable<Tuple3<String, String, Integer>> second, Collector<String> out) throws Exception {                         StringBuilder sb = new StringBuilder();                         Gson gson = new Gson();                         //datastream1的数据流集合                         for (Tuple3<String, String, Integer> tuple3 : first) {                             sb.append(gson.toJson(tuple3)).append("\n");                         }                         //datastream2的数据流集合                         for (Tuple3<String, String, Integer> tuple3 : second) {                             sb.append(gson.toJson(tuple3)).append("\n");                         }                         out.collect(sb.toString());                     }                 });         newDataStream.print();         env.execute("flink CoGroup job");     } }

打印结果

{"f0":"张三","f1":"man","f2":20} {"f0":"王五","f1":"man","f2":29} {"f0":"吴八","f1":"man","f2":30} {"f0":"吴八","f1":"man","f2":30} {"f0":"李四","f1":"girl","f2":24} {"f0":"刘六","f1":"girl","f2":32} {"f0":"伍七","f1":"girl","f2":18} {"f0":"伍七","f1":"girl","f2":18}

到此,关于“Flink的CoGroup如何使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI