import pandas as pd Pandas有两个最主要也是最重要的数据结构:Series和DataFrame
Series
Series是一种类似于一维数组的对象,由一组数据(各种NumPy数据类型)以及一组与之对应的索引(数据标签)组成。
ser_obj = pd.Series(range(10))
示例代码:
# 通过list构建Series ser_obj = pd.Series(range(10, 20)) print(ser_obj.head(3)) print(ser_obj) print(type(ser_obj)) 运行结果
0 10 1 11 2 12 dtype: int64 0 10 1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 dtype: int64 <class 'pandas.core.series.Series'> ser_obj.index 和 ser_obj.values
示例代码:
# 获取数据 print(ser_obj.values) # 获取索引 print(ser_obj.index) 运行结果:
[10 11 12 13 14 15 16 17 18 19] RangeIndex(start=0, stop=10, step=1) ser_obj[idx]
实例代码:
# 通过索引获取数据 print(ser_obj[0]) print(ser_obj[8]) 运行结果:
10 18 示例代码:
# 索引与数据的对应关系不被运算结果影响 print(ser_obj * 2) print(ser_obj > 15) 运行结果:
0 20 1 22 2 24 3 26 4 28 5 30 6 32 7 34 8 36 9 38 dtype: int64 0 False 1 False 2 False 3 False 4 False 5 False 6 True 7 True 8 True 9 True dtype: bool 示例代码:
year_data = {2001: 17.8, 2002: 20.1, 2003: 16.3} Ser_obj2 = pd.Series(year_data) print(ser_obj2.head()) print(ser_obj2.index) 运行结果:
2001 17.8 2002 20.1 2003 16.5 dtype: float64 Int64Index([2001, 2002, 2003], dtype='int64') 对象名:ser_obj.name
对象索引名:ser_obj.index.name
示例代码:
# name属性 ser_obj2.name = 'temp' ser_obj2.index.name = 'year' print(ser_obj2.head()) 运行结果:
year 2001 17.8 2002 20.1 2003 16.5 Name: temp, dtype: float64 DataFrame
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同类型的值。DataFrame既有行索引也有列索引,它可以被看作是由Series组成的字典(共用同一个索引),数据是以二维结构存放的。
示例代码:
import numpy as np # 通过ndarray构建DataFrame array = np.random.randn(5, 4) print(array) df_obj = pd.DataFrame(array) print(df_obj.head()) 运行结果:
[[ 0.83500594 -1.49290138 -0.53120106 -0.11313932] [ 0.64629762 -0.36779941 0.08011084 0.60080495] [-1.23458522 0.33409674 -0.58778195 -0.73610573] [-1.47651414 0.99400187 0.21001995 -0.90515656] [ 0.56669419 1.38238348 -0.49099007 1.94484598]] 0 1 2 3 0 0.835006 -1.492901 -0.531201 -0.113139 1 0.646298 -0.367799 0.080111 0.600805 2 -1.234585 0.334097 -0.587782 -0.736106 3 -1.476514 0.994002 0.210020 -0.905157 4 0.566694 1.382383 -0.490990 1.944846 示例代码:
# 通过dict构建DataFrame dict_data = {'A': 1, 'B': pd.Timestamp('20170426'), 'C': pd.Series(1, index = list(range(4)), dtype = 'float32'), 'D': np.array([3] * 4, dtype = 'int32'), 'E': ["Python", "Java", "C++", "C"], 'F': 'ITCast' } #print dict_data df_obj2 = pd.DataFrame(dict_data) print(df_obj2) 运行结果:
A B C D E F 0 1 2017-04-26 1.0 3 Python ITCast 1 1 2017-04-26 1.0 3 Java ITCast 2 1 2017-04-26 1.0 3 C++ ITCast 3 1 2017-04-26 1.0 3 C ITCast df_obj[col_idx]或df_obj.col_idx
示例代码:
print(df_obj2['A']) print(type(df_obj2['A'])) print(df_obj2.A) 运行结果:
0 1.0 1 1.0 2 1.0 3 1.0 Name: A, dtype: float64 <class 'pandas.core.series.Series'> 0 1.0 1 1.0 2 1.0 3 1.0 Name: A, dtype: float64 df_obj[new_col_idx] = data
类似Python的dict添加key-value
示例代码:
df_obj2['G'] = df_obj2['D'] + 4 print(df_obj2.head()) 运行结果:
A B C D E F G 0 1.0 2017-01-02 1.0 3 Python ITCast 7 1 1.0 2017-01-02 1.0 3 Java ITCast 7 2 1.0 2017-01-02 1.0 3 C++ ITCast 7 3 1.0 2017-01-02 1.0 3 C ITCast 7 del df_obj[col_idx]
示例代码:
del(df_obj2['G']) print(df_obj2.head()) 运行结果:
A B C D E F 0 1.0 2017-01-02 1.0 3 Python ITCast 1 1.0 2017-01-02 1.0 3 Java ITCast 2 1.0 2017-01-02 1.0 3 C++ ITCast 3 1.0 2017-01-02 1.0 3 C ITCast 免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。