温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

数据清洗、合并、转化和重构

发布时间:2020-07-26 12:52:00 来源:网络 阅读:629 作者:Tobey_51 栏目:大数据

数据清洗

  • 数据清洗是数据分析关键的一步,直接影响之后的处理工作
  • 数据需要修改吗?有什么需要修改的吗?数据应该怎么调整才能适用于接下来的分析和挖掘?
  • 是一个迭代的过程,实际项目中可能需要不止一次地执行这些清洗操作
  • 处理缺失数据:pd.fillna(),pd.dropna()

数据连接(pd.merge)

  • pd.merge
  • 根据单个或多个键将不同DataFrame的行连接起来
  • 类似数据库的连接操作

示例代码:

import pandas as pd import numpy as np df_obj1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1' : np.random.randint(0,10,7)}) df_obj2 = pd.DataFrame({'key': ['a', 'b', 'd'], 'data2' : np.random.randint(0,10,3)}) print(df_obj1) print(df_obj2)

运行结果:

 data1 key data1 key 0 8 b 1 8 b 2 3 a 3 5 c 4 4 a 5 9 a 6 6 b data2 key 0 9 a 1 0 b 2 3 d

1. 默认将重叠列的列名作为“外键”进行连接

示例代码:

# 默认将重叠列的列名作为“外键”进行连接 print(pd.merge(df_obj1, df_obj2))

运行结果:

 data1 key data2 0 8 b 0 1 8 b 0 2 6 b 0 3 3 a 9 4 4 a 9 5 9 a 9

2. on显示指定“外键”

示例代码:

# on显示指定“外键” print(pd.merge(df_obj1, df_obj2, on='key'))

运行结果:

 data1 key data2 0 8 b 0 1 8 b 0 2 6 b 0 3 3 a 9 4 4 a 9 5 9 a 9

3. left_on,左侧数据的“外键”,right_on,右侧数据的“外键”

示例代码:

# left_on,right_on分别指定左侧数据和右侧数据的“外键” # 更改列名 df_obj1 = df_obj1.rename(columns={'key':'key1'}) df_obj2 = df_obj2.rename(columns={'key':'key2'}) print(pd.merge(df_obj1, df_obj2, left_on='key1', right_on='key2'))

运行结果:

 data1 key1 data2 key2 0 8 b 0 b 1 8 b 0 b 2 6 b 0 b 3 3 a 9 a 4 4 a 9 a 5 9 a 9 a

默认是“内连接”(inner),即结果中的键是交集

how指定连接方式

4. “外连接”(outer),结果中的键是并集

示例代码:

# “外连接” print(pd.merge(df_obj1, df_obj2, left_on='key1', right_on='key2', how='outer'))

运行结果:

 data1 key1 data2 key2 0 8.0 b 0.0 b 1 8.0 b 0.0 b 2 6.0 b 0.0 b 3 3.0 a 9.0 a 4 4.0 a 9.0 a 5 9.0 a 9.0 a 6 5.0 c NaN NaN 7 NaN NaN 3.0 d

5. “左连接”(left)

示例代码:

# 左连接 print(pd.merge(df_obj1, df_obj2, left_on='key1', right_on='key2', how='left'))

运行结果:

 data1 key1 data2 key2 0 8 b 0.0 b 1 8 b 0.0 b 2 3 a 9.0 a 3 5 c NaN NaN 4 4 a 9.0 a 5 9 a 9.0 a 6 6 b 0.0 b

6. “右连接”(right)

示例代码:

# 右连接 print(pd.merge(df_obj1, df_obj2, left_on='key1', right_on='key2', how='right'))

运行结果:

 data1 key1 data2 key2 0 8.0 b 0 b 1 8.0 b 0 b 2 6.0 b 0 b 3 3.0 a 9 a 4 4.0 a 9 a 5 9.0 a 9 a 6 NaN NaN 3 d

7. 处理重复列名

suffixes,默认为_x, _y

示例代码:

# 处理重复列名 df_obj1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data' : np.random.randint(0,10,7)}) df_obj2 = pd.DataFrame({'key': ['a', 'b', 'd'], 'data' : np.random.randint(0,10,3)}) print(pd.merge(df_obj1, df_obj2, on='key', suffixes=('_left', '_right')))

运行结果:

 data_left key data_right 0 9 b 1 1 5 b 1 2 1 b 1 3 2 a 8 4 2 a 8 5 5 a 8

8. 按索引连接

left_index=True或right_index=True

示例代码:

# 按索引连接 df_obj1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1' : np.random.randint(0,10,7)}) df_obj2 = pd.DataFrame({'data2' : np.random.randint(0,10,3)}, index=['a', 'b', 'd']) print(pd.merge(df_obj1, df_obj2, left_on='key', right_index=True))

运行结果:

 data1 key data2 0 3 b 6 1 4 b 6 6 8 b 6 2 6 a 0 4 3 a 0 5 0 a 0

数据合并(pd.concat)

  • 沿轴方向将多个对象合并到一起

1. NumPy的concat

np.concatenate

示例代码:

import numpy as np import pandas as pd arr1 = np.random.randint(0, 10, (3, 4)) arr2 = np.random.randint(0, 10, (3, 4)) print(arr1) print(arr2) print(np.concatenate([arr1, arr2])) print(np.concatenate([arr1, arr2], axis=1))

运行结果:

# print(arr1) [[3 3 0 8] [2 0 3 1] [4 8 8 2]] # print(arr2) [[6 8 7 3] [1 6 8 7] [1 4 7 1]] # print(np.concatenate([arr1, arr2])) [[3 3 0 8] [2 0 3 1] [4 8 8 2] [6 8 7 3] [1 6 8 7] [1 4 7 1]] # print(np.concatenate([arr1, arr2], axis=1)) [[3 3 0 8 6 8 7 3] [2 0 3 1 1 6 8 7] [4 8 8 2 1 4 7 1]]

2. pd.concat

  • 注意指定轴方向,默认axis=0
  • join指定合并方式,默认为outer
  • Series合并时查看行索引有无重复

1) index 没有重复的情况

示例代码:

# index 没有重复的情况 ser_obj1 = pd.Series(np.random.randint(0, 10, 5), index=range(0,5)) ser_obj2 = pd.Series(np.random.randint(0, 10, 4), index=range(5,9)) ser_obj3 = pd.Series(np.random.randint(0, 10, 3), index=range(9,12)) print(ser_obj1) print(ser_obj2) print(ser_obj3) print(pd.concat([ser_obj1, ser_obj2, ser_obj3])) print(pd.concat([ser_obj1, ser_obj2, ser_obj3], axis=1))

运行结果:

# print(ser_obj1) 0 1 1 8 2 4 3 9 4 4 dtype: int64 # print(ser_obj2) 5 2 6 6 7 4 8 2 dtype: int64 # print(ser_obj3) 9 6 10 2 11 7 dtype: int64 # print(pd.concat([ser_obj1, ser_obj2, ser_obj3])) 0 1 1 8 2 4 3 9 4 4 5 2 6 6 7 4 8 2 9 6 10 2 11 7 dtype: int64 # print(pd.concat([ser_obj1, ser_obj2, ser_obj3], axis=1)) 0 1 2 0 1.0 NaN NaN 1 5.0 NaN NaN 2 3.0 NaN NaN 3 2.0 NaN NaN 4 4.0 NaN NaN 5 NaN 9.0 NaN 6 NaN 8.0 NaN 7 NaN 3.0 NaN 8 NaN 6.0 NaN 9 NaN NaN 2.0 10 NaN NaN 3.0 11 NaN NaN 3.0

2) index 有重复的情况

示例代码:

# index 有重复的情况 ser_obj1 = pd.Series(np.random.randint(0, 10, 5), index=range(5)) ser_obj2 = pd.Series(np.random.randint(0, 10, 4), index=range(4)) ser_obj3 = pd.Series(np.random.randint(0, 10, 3), index=range(3)) print(ser_obj1) print(ser_obj2) print(ser_obj3) print(pd.concat([ser_obj1, ser_obj2, ser_obj3]))

运行结果:

# print(ser_obj1) 0 0 1 3 2 7 3 2 4 5 dtype: int64 # print(ser_obj2) 0 5 1 1 2 9 3 9 dtype: int64 # print(ser_obj3) 0 8 1 7 2 9 dtype: int64 # print(pd.concat([ser_obj1, ser_obj2, ser_obj3])) 0 0 1 3 2 7 3 2 4 5 0 5 1 1 2 9 3 9 0 8 1 7 2 9 dtype: int64 # print(pd.concat([ser_obj1, ser_obj2, ser_obj3], axis=1, join='inner')) # join='inner' 将去除NaN所在的行或列 0 1 2 0 0 5 8 1 3 1 7 2 7 9 9

3) DataFrame合并时同时查看行索引和列索引有无重复

示例代码:

df_obj1 = pd.DataFrame(np.random.randint(0, 10, (3, 2)), index=['a', 'b', 'c'], columns=['A', 'B']) df_obj2 = pd.DataFrame(np.random.randint(0, 10, (2, 2)), index=['a', 'b'], columns=['C', 'D']) print(df_obj1) print(df_obj2) print(pd.concat([df_obj1, df_obj2])) print(pd.concat([df_obj1, df_obj2], axis=1, join='inner'))

运行结果:

# print(df_obj1) A B a 3 3 b 5 4 c 8 6 # print(df_obj2) C D a 1 9 b 6 8 # print(pd.concat([df_obj1, df_obj2])) A B C D a 3.0 3.0 NaN NaN b 5.0 4.0 NaN NaN c 8.0 6.0 NaN NaN a NaN NaN 1.0 9.0 b NaN NaN 6.0 8.0 # print(pd.concat([df_obj1, df_obj2], axis=1, join='inner')) A B C D a 3 3 1 9 b 5 4 6 8

数据重构

1. stack

  • 将列索引旋转为行索引,完成层级索引
  • DataFrame->Series

示例代码:

import numpy as np import pandas as pd df_obj = pd.DataFrame(np.random.randint(0,10, (5,2)), columns=['data1', 'data2']) print(df_obj) stacked = df_obj.stack() print(stacked)

运行结果:

# print(df_obj) data1 data2 0 7 9 1 7 8 2 8 9 3 4 1 4 1 2 # print(stacked) 0 data1 7 data2 9 1 data1 7 data2 8 2 data1 8 data2 9 3 data1 4 data2 1 4 data1 1 data2 2 dtype: int64

2. unstack

  • 将层级索引展开
  • Series->DataFrame
  • 让操作内层索引,即level=-1

示例代码:

# 默认操作内层索引 print(stacked.unstack()) # 通过level指定操作索引的级别 print(stacked.unstack(level=0))

运行结果:

# print(stacked.unstack()) data1 data2 0 7 9 1 7 8 2 8 9 3 4 1 4 1 2 # print(stacked.unstack(level=0)) 0 1 2 3 4 data1 7 7 8 4 1 data2 9 8 9 1 2

数据转换

一、 处理重复数据

1 duplicated() 返回布尔型Series表示每行是否为重复行

示例代码:

import numpy as np import pandas as pd df_obj = pd.DataFrame({'data1' : ['a'] * 4 + ['b'] * 4, 'data2' : np.random.randint(0, 4, 8)}) print(df_obj) print(df_obj.duplicated())

运行结果:

# print(df_obj) data1 data2 0 a 3 1 a 2 2 a 3 3 a 3 4 b 1 5 b 0 6 b 3 7 b 0 # print(df_obj.duplicated()) 0 False 1 False 2 True 3 True 4 False 5 False 6 False 7 True dtype: bool

2 drop_duplicates() 过滤重复行

默认判断全部列

可指定按某些列判断

示例代码:

print(df_obj.drop_duplicates()) print(df_obj.drop_duplicates('data2'))

运行结果:

# print(df_obj.drop_duplicates()) data1 data2 0 a 3 1 a 2 4 b 1 5 b 0 6 b 3 # print(df_obj.drop_duplicates('data2')) data1 data2 0 a 3 1 a 2 4 b 1 5 b 0

3. 根据map传入的函数对每行或每列进行转换

  • Series根据map传入的函数对每行或每列进行转换

示例代码:

ser_obj = pd.Series(np.random.randint(0,10,10)) print(ser_obj) print(ser_obj.map(lambda x : x ** 2))

运行结果:

# print(ser_obj) 0 1 1 4 2 8 3 6 4 8 5 6 6 6 7 4 8 7 9 3 dtype: int64 # print(ser_obj.map(lambda x : x ** 2)) 0 1 1 16 2 64 3 36 4 64 5 36 6 36 7 16 8 49 9 9 dtype: int64

二、数据替换

replace根据值的内容进行替换

示例代码:

# 单个值替换单个值 print(ser_obj.replace(1, -100)) # 多个值替换一个值 print(ser_obj.replace([6, 8], -100)) # 多个值替换多个值 print(ser_obj.replace([4, 7], [-100, -200]))

运行结果:

# print(ser_obj.replace(1, -100)) 0 -100 1 4 2 8 3 6 4 8 5 6 6 6 7 4 8 7 9 3 dtype: int64 # print(ser_obj.replace([6, 8], -100)) 0 1 1 4 2 -100 3 -100 4 -100 5 -100 6 -100 7 4 8 7 9 3 dtype: int64 # print(ser_obj.replace([4, 7], [-100, -200])) 0 1 1 -100 2 8 3 6 4 8 5 6 6 6 7 -100 8 -200 9 3 dtype: int64
向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI