温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Spark中Spark SQL怎么用

发布时间:2021-08-09 11:41:38 来源:亿速云 阅读:193 作者:小新 栏目:编程语言

小编给大家分享一下Spark中Spark SQL怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

1. Spark SQL是什么?

  • 处理结构化数据的一个spark的模块

  • 它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用

2. Spark SQL的特点

  • 多语言的接口支持(java python scala)

  • 统一的数据访问

  • 完全兼容hive

  • 支持标准的连接

3. 为什么学习SparkSQL?

我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!

4. DataFrame(数据框)

  • 与RDD类似,DataFrame也是一个分布式数据容器

  • 然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema

  • DataFrame其实就是带有schema信息的RDD

5. SparkSQL1.x的API编程

<dependency>   <groupId>org.apache.spark</groupId>   <artifactId>spark-sql_2.11</artifactId>   <version>${spark.version}</version> </dependency>

5.1 使用sqlContext创建DataFrame(测试用)

object Ops3 {   def main(args: Array[String]): Unit = {     val conf = new SparkConf().setAppName("Ops3").setMaster("local[3]")     val sc = new SparkContext(conf)     val sqlContext = new SQLContext(sc)     val rdd1 = sc.parallelize(List(Person("admin1", 14, "man"),Person("admin2", 16, "man"),Person("admin3", 18, "man")))     val df1: DataFrame = sqlContext.createDataFrame(rdd1)     df1.show(1)   } } case class Person(name: String, age: Int, sex: String);

5.2 使用sqlContxet中提供的隐式转换函数(测试用)

import org.apache.spark val conf = new SparkConf().setAppName("Ops3").setMaster("local[3]") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) val rdd1 = sc.parallelize(List(Person("admin1", 14, "man"), Person("admin2", 16, "man"), Person("admin3", 18, "man"))) import sqlContext.implicits._ val df1: DataFrame = rdd1.toDF df1.show() 5.3 使用SqlContext创建DataFrame(常用) val conf = new SparkConf().setAppName("Ops3").setMaster("local[3]") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/") val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType))) val rowRDD: RDD[Row] = linesRDD.map(line => {  val lineSplit: Array[String] = line.split(",")  Row(lineSplit(0), lineSplit(1).toInt, lineSplit(2)) }) val rowDF: DataFrame = sqlContext.createDataFrame(rowRDD, schema) rowDF.show()

6. 使用新版本的2.x的API

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]") val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate() val sc = sparkSession.sparkContext val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/") //数据清洗 val rowRDD: RDD[Row] = linesRDD.map(line => {   val splits: Array[String] = line.split(",")   Row(splits(0), splits(1).toInt, splits(2)) }) val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType))) val df: DataFrame = sparkSession.createDataFrame(rowRDD, schema) df.createOrReplaceTempView("p1") val df2 = sparkSession.sql("select * from p1") df2.show()

7. 操作SparkSQL的方式

7.1 使用SQL语句的方式对DataFrame进行操作

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]") val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()//Spark2.x新的API相当于Spark1.x的SQLContext val sc = sparkSession.sparkContext val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/") //数据清洗 val rowRDD: RDD[Row] = linesRDD.map(line => {   val splits: Array[String] = line.split(",")   Row(splits(0), splits(1).toInt, splits(2)) }) val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType))) val df: DataFrame = sparkSession.createDataFrame(rowRDD, schema) df.createOrReplaceTempView("p1")//这是Sprk2.x新的API 相当于Spark1.x的registTempTable() val df2 = sparkSession.sql("select * from p1") df2.show()

7.2 使用DSL语句的方式对DataFrame进行操作

DSL(domain specific language ) 特定领域语言 val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]") val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate() val sc = sparkSession.sparkContext val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/") //数据清洗 val rowRDD: RDD[Row] = linesRDD.map(line => {   val splits: Array[String] = line.split(",")   Row(splits(0), splits(1).toInt, splits(2)) }) val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType))) val rowDF: DataFrame = sparkSession.createDataFrame(rowRDD, schema) import sparkSession.implicits._ val df: DataFrame = rowDF.select("name", "age").where("age>10").orderBy($"age".desc) df.show()

8. SparkSQL的输出

8.1 写出到JSON文件

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]") val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate() val sc = sparkSession.sparkContext val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest") //数据清洗 val rowRDD: RDD[Row] = linesRDD.map(line => {   val splits: Array[String] = line.split(",")   Row(splits(0), splits(1).toInt, splits(2)) }) val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType))) val rowDF: DataFrame = sparkSession.createDataFrame(rowRDD, schema) import sparkSession.implicits._ val df: DataFrame = rowDF.select("name", "age").where("age>10").orderBy($"age".desc) df.write.json("hdfs://uplooking02:8020/sparktest1")

8.2 写出到关系型数据库(mysql)

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]") val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate() val sc = sparkSession.sparkContext val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest") //数据清洗 val rowRDD: RDD[Row] = linesRDD.map(line => {   val splits: Array[String] = line.split(",")   Row(splits(0), splits(1).toInt, splits(2)) }) val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType))) val rowDF: DataFrame = sparkSession.createDataFrame(rowRDD, schema) import sparkSession.implicits._ val df: DataFrame = rowDF.select("name", "age").where("age>10").orderBy($"age".desc) val url = "jdbc:mysql://localhost:3306/test" //表会自动创建 val tbName = "person1"; val prop = new Properties() prop.put("user", "root") prop.put("password", "root") //SaveMode 默认为ErrorIfExists df.write.mode(SaveMode.Append).jdbc(url, tbName, prop)

以上是“Spark中Spark SQL怎么用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI