温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

PyTorch如何搭建一维线性回归模型

发布时间:2021-02-19 09:27:30 来源:亿速云 阅读:201 作者:小新 栏目:开发技术

这篇文章主要介绍了PyTorch如何搭建一维线性回归模型,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

PyTorch搭建一维线性回归模型

1)一维线性回归模型的理论基础

给定数据集PyTorch如何搭建一维线性回归模型,线性回归希望能够优化出一个好的函数PyTorch如何搭建一维线性回归模型,使得PyTorch如何搭建一维线性回归模型能够和PyTorch如何搭建一维线性回归模型尽可能接近。

如何才能学习到参数PyTorch如何搭建一维线性回归模型PyTorch如何搭建一维线性回归模型呢?很简单,只需要确定如何衡量PyTorch如何搭建一维线性回归模型PyTorch如何搭建一维线性回归模型之间的差别,我们一般通过损失函数(Loss Funciton)来衡量:PyTorch如何搭建一维线性回归模型。取平方是因为距离有正有负,我们于是将它们变为全是正的。这就是著名的均方误差。我们要做的事情就是希望能够找到PyTorch如何搭建一维线性回归模型PyTorch如何搭建一维线性回归模型,使得:

PyTorch如何搭建一维线性回归模型

PyTorch如何搭建一维线性回归模型

均方差误差非常直观,也有着很好的几何意义,对应了常用的欧式距离。现在要求解这个连续函数的最小值,我们很自然想到的方法就是求它的偏导数,让它的偏导数等于0来估计它的参数,即:

PyTorch如何搭建一维线性回归模型

PyTorch如何搭建一维线性回归模型

求解以上两式,我们就可以得到最优解。

2)代码实现

首先,我们需要“制造”出一些数据集:

import torch import matplotlib.pyplot as plt     x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = 3*x + 10 + torch.rand(x.size()) # 上面这行代码是制造出接近y=3x+10的数据集,后面加上torch.rand()函数制造噪音   # 画图 plt.scatter(x.data.numpy(), y.data.numpy()) plt.show()

我们想要拟合的一维回归模型是PyTorch如何搭建一维线性回归模型。上面制造的数据集也是比较接近这个模型的,但是为了达到学习效果,人为地加上了torch.rand()值增加一些干扰。

上面人为制造出来的数据集的分布如下:

PyTorch如何搭建一维线性回归模型

有了数据,我们就要开始定义我们的模型,这里定义的是一个输入层和输出层都只有一维的模型,并且使用了“先判断后使用”的基本结构来合理使用GPU加速。

class LinearRegression(nn.Module):   def __init__(self):     super(LinearRegression, self).__init__()     self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1   def forward(self, x):     out = self.linear(x)     return out   if torch.cuda.is_available():   model = LinearRegression().cuda() else:   model = LinearRegression()

然后我们定义出损失函数和优化函数,这里使用均方误差作为损失函数,使用梯度下降进行优化:

criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)

接下来,开始进行模型的训练。

num_epochs = 1000 for epoch in range(num_epochs):   if torch.cuda.is_available():     inputs = Variable(x).cuda()     target = Variable(y).cuda()   else:     inputs = Variable(x)     target = Variable(y)     # 向前传播   out = model(inputs)   loss = criterion(out, target)     # 向后传播   optimizer.zero_grad() # 注意每次迭代都需要清零   loss.backward()   optimizer.step()     if (epoch+1) %20 == 0:     print('Epoch[{}/{}], loss:{:.6f}'.format(epoch+1, num_epochs, loss.data[0]))

首先定义了迭代的次数,这里为1000次,先向前传播计算出损失函数,然后向后传播计算梯度,这里需要注意的是,每次计算梯度前都要记得将梯度归零,不然梯度会累加到一起造成结果不收敛。为了便于看到结果,每隔一段时间输出当前的迭代轮数和损失函数。

接下来,我们通过model.eval()函数将模型变为测试模式,然后将数据放入模型中进行预测。最后,通过画图工具matplotlib看一下我们拟合的结果,代码如下:

model.eval() if torch.cuda.is_available():   predict = model(Variable(x).cuda())   predict = predict.data.cpu().numpy() else:   predict = model(Variable(x))   predict = predict.data.numpy() plt.plot(x.numpy(), y.numpy(), 'ro', label='Original Data') plt.plot(x.numpy(), predict, label='Fitting Line') plt.show()

其拟合结果如下图:

PyTorch如何搭建一维线性回归模型

附上完整代码:

# !/usr/bin/python # coding: utf8 # @Time  : 2018-07-28 18:40 # @Author : Liam # @Email  : luyu.real@qq.com # @Software: PyCharm #            .::::. #           .::::::::. #           ::::::::::: #         ..:::::::::::' #        '::::::::::::' #         .:::::::::: #      '::::::::::::::.. #         ..::::::::::::. #        ``:::::::::::::::: #        ::::``:::::::::'    .:::. #        ::::'  ':::::'    .::::::::. #       .::::'   ::::   .:::::::'::::. #      .:::'    ::::: .:::::::::' ':::::. #      .::'    :::::.:::::::::'   ':::::. #     .::'     ::::::::::::::'     ``::::. #   ...:::      ::::::::::::'       ``::. #   ```` ':.     ':::::::::'         ::::.. #            '.:::::'          ':'````.. #           美女保佑 永无BUG   import torch from torch.autograd import Variable import numpy as np import random import matplotlib.pyplot as plt from torch import nn     x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = 3*x + 10 + torch.rand(x.size()) # 上面这行代码是制造出接近y=3x+10的数据集,后面加上torch.rand()函数制造噪音   # 画图 # plt.scatter(x.data.numpy(), y.data.numpy()) # plt.show() class LinearRegression(nn.Module):   def __init__(self):     super(LinearRegression, self).__init__()     self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1   def forward(self, x):     out = self.linear(x)     return out   if torch.cuda.is_available():   model = LinearRegression().cuda() else:   model = LinearRegression()   criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)   num_epochs = 1000 for epoch in range(num_epochs):   if torch.cuda.is_available():     inputs = Variable(x).cuda()     target = Variable(y).cuda()   else:     inputs = Variable(x)     target = Variable(y)     # 向前传播   out = model(inputs)   loss = criterion(out, target)     # 向后传播   optimizer.zero_grad() # 注意每次迭代都需要清零   loss.backward()   optimizer.step()     if (epoch+1) %20 == 0:     print('Epoch[{}/{}], loss:{:.6f}'.format(epoch+1, num_epochs, loss.data[0])) model.eval() if torch.cuda.is_available():   predict = model(Variable(x).cuda())   predict = predict.data.cpu().numpy() else:   predict = model(Variable(x))   predict = predict.data.numpy() plt.plot(x.numpy(), y.numpy(), 'ro', label='Original Data') plt.plot(x.numpy(), predict, label='Fitting Line') plt.show()

感谢你能够认真阅读完这篇文章,希望小编分享的“PyTorch如何搭建一维线性回归模型”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI