温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python怎么任务调度APScheduler

发布时间:2021-03-11 17:19:04 来源:亿速云 阅读:287 作者:TREX 栏目:开发技术

这篇文章主要讲解了“Python怎么任务调度APScheduler”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python怎么任务调度APScheduler”吧!

任务调度应用场景

所谓的任务调度是指安排任务的执行计划,即何时执行,怎么执行等。在现实项目中经常出现它们的身影;特别是数据类项目,比如实时统计每5分钟网站的访问量,就需要每5分钟定时从日志数据分析访问量。

总结下任务调度应用场景:

  •  离线作业调度:按时间粒度执行某项任务

  •  共享缓存更新:定时刷新缓存,如redis缓存;不同进程间的共享数据

任务调度工具

  •  linux的crontab, 支持按照分钟/小时/天/月/周粒度,执行任务

  •  java的Quartz

  •  windows的任务计划

本文介绍的是python中的任务调度库,APScheduler(advance python scheduler)。如果你了解Quartz的话,可以看出APScheduler是Quartz的python实现;APScheduler提供了基于时间,固定时间点和crontab方式的任务调用方案, 可以当作一个跨平台的调度工具来使用。

APScheduler

组件介绍

APScheduler由5个部分组成:触发器、调度器、任务存储器、执行器和任务事件。

  •  任务job:任务id和任务执行func

  •  触发器triggers:确定任务何时开始执行

  •  任务存储器job stores: 保存任务的状态

  •  执行器executors:确定任务怎么执行

  •  任务事件event:监控任务执行异常情况

  •  调度器schedulers:串联任务的整个生命周期,添加编辑任务到任务存储器,在任务的执行时间到来时,把任务交给执行器执行返回结果;同时发出事件监听,监控任务事件 。

Python怎么任务调度APScheduler 

安装

pip install apscheduler

简单例子

from apscheduler.schedulers.background import BackgroundScheduler  from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor  from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore  from apscheduler.events import EVENT_JOB_EXECUTED, EVENT_JOB_ERROR  import logging  import datetime  # 任务执行函数  def job_func(job_id):   print('job %s is runed at %s' % (job_id, datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))  # 事件监听  def job_exception_listener(event):   if event.exception:   # todo:异常处理, 告警等   print('The job crashed :(')   else:   print('The job worked :)')  # 日志  logging.basicConfig()  logging.getLogger('apscheduler').setLevel(logging.DEBUG)  # 定义一个后台任务非阻塞调度器  scheduler = BackgroundScheduler()  # 添加一个任务到内存中  # 触发器:trigger='interval' seconds=10 每10s触发执行一次  # 执行器:executor='default' 线程执行  # 任务存储器:jobstore='default' 默认内存存储  # 最大并发数:max_instances  scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', max_instances=10, jobstore='default', executor='default', seconds=10)  # 设置任务监听  scheduler.add_listener(job_exception_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)  # 启动调度器  scheduler.start()

运行情况:

job 1 is runed at 2020-03-21 20:00:38 
The job worked :) 
job 1 is runed at 2020-03-21 20:00:48 
The job worked :) 
job 1 is runed at 2020-03-21 20:00:58 
The job worked :)

触发器

触发器决定何时执行任务,APScheduler支持的触发器有3种

 trigger='interval':按固定时间周期执行,支持weeks,days,hours,minutes, seconds, 还可指定时间范围  

sched.add_job(job_function, 'interval', hours=2, start_date='2010-10-10 09:30:00', end_date='2014-06-15 11:00:00') 

 trigger='date': 固定时间,执行一次  

sched.add_job(my_job, 'date', run_date=datetime(2009, 11, 6, 16, 30, 5), args=['text']) 

  trigger='cron': 支持crontab方式,执行任务

  参数:分钟/小时/天/月/周粒度,也可指定时间范围    

year (int|str) – 4-digit year   month (int|str) – month (1-12)   day (int|str) – day of the (1-31)   week (int|str) – ISO week (1-53)   day_of_week (int|str) – number or name of weekday (0-6 or mon,tue,wed,thu,fri,sat,sun)   hour (int|str) – hour (0-23)   minute (int|str) – minute (0-59)   second (int|str) – second (0-59)   start_date (datetime|str) – earliest possible date/time to trigger on (inclusive)   end_date (datetime|str) – latest possible date/time to trigger on (inclusive)

  例子          

# 星期一到星期五,5点30执行任务job_function,直到2014-05-30 00:00:00    sched.add_job(job_function, 'cron', day_of_week='mon-fri', hour=5, minute=30, end_date='2014-05-30')    # 按照crontab格式执行, 格式为:分钟 小时 天 月 周,*表示所有    # 5月到8月的1号到15号,0点0分执行任务job_function    sched.add_job(job_function, CronTrigger.from_crontab('0 0 1-15 may-aug *'))

执行器

执行器决定如何执行任务;APScheduler支持4种不同执行器,常用的有pool(线程/进程)和gevent(io多路复用,支持高并发),默认为pool中线程池, 不同的执行器可以在调度器的配置中进行配置(见调度器)

  •  apscheduler.executors.asyncio:同步io,阻塞

  •  apscheduler.executors.gevent:io多路复用,非阻塞

  •  apscheduler.executors.pool: 线程ThreadPoolExecutor和进程ProcessPoolExecutor

  •  apscheduler.executors.twisted:基于事件驱动

任务存储器

任务存储器决定任务的保存方式, 默认存储在内存中(MemoryJobStore),重启后就没有了。APScheduler支持的任务存储器有:

  •  apscheduler.jobstores.memory:内存

  •  apscheduler.jobstores.mongodb:存储在mongodb

  •  apscheduler.jobstores.redis:存储在redis

  •  apscheduler.jobstores.rethinkdb:存储在rethinkdb

  •  apscheduler.jobstores.sqlalchemy:支持sqlalchemy的数据库如mysql,sqlite等

  •  apscheduler.jobstores.zookeeper:zookeeper

不同的任务存储器可以在调度器的配置中进行配置(见调度器)

调度器

APScheduler支持的调度器方式如下,比较常用的为BlockingScheduler和BackgroundScheduler

  •  BlockingScheduler:适用于调度程序是进程中唯一运行的进程,调用start函数会阻塞当前线程,不能立即返回。

  •  BackgroundScheduler:适用于调度程序在应用程序的后台运行,调用start后主线程不会阻塞。

  •  AsyncIOScheduler:适用于使用了asyncio模块的应用程序。

  •  GeventScheduler:适用于使用gevent模块的应用程序。

  •  TwistedScheduler:适用于构建Twisted的应用程序。

  •  QtScheduler:适用于构建Qt的应用程序。

从前面的例子,我们可以看到,调度器可以操作任务(并为任务指定触发器、任务存储器和执行器)和监控任务。

scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', max_instances=10, jobstore='default', executor='default', seconds=10)

我们来详细看下各个部分

 调度器配置:在add_job我们看到jobstore和executor都是default,APScheduler在定义调度器时可以指定不同的任务存储和执行器,以及初始的参数  

from pytz import utc   from apscheduler.schedulers.background import BackgroundScheduler   from apscheduler.jobstores.mongodb import MongoDBJobStore   from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore   from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor   # 通过dict方式执行不同的jobstores、executors和默认的参数   jobstores = {   'mongo': MongoDBJobStore(),   'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')   }   executors = {   'default': ThreadPoolExecutor(20),   'processpool': ProcessPoolExecutor(5)   }   job_defaults = {   'coalesce': False,   'max_instances': 3   }   # 定义调度器   scheduler = BackgroundScheduler(jobstoresjobstores=jobstores, executorsexecutors=executors, job_defaultsjob_defaults=job_defaults, timezone=utc)   def job_func(job_id):   print('job %s is runed at %s' % (job_id, datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))   # 添加任务   scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', jobstore='default', executor='processpool', seconds=10)   # 启动调度器   scheduler.start()

 操作任务:调度器可以增加,删除,暂停,恢复和修改任务。需要注意的是这里的操作只是对未执行的任务起作用,已经执行和正在执行的任务不受这些操作的影响。

  add_job    

scheduler.add_job(job_func, trigger='interval', args=[1], id='1', name='a test job', max_instances=10, jobstore='default', executor='default', seconds=10)

  remove_job: 通过任务唯一的id,删除的时候对应的任务存储器里记录也会删除

scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')   scheduler.remove_job('my_job_id')

  Pausing and resuming jobs:暂停和重启任务      

scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')   scheduler.pause_job('my_job_id')   scheduler.resume_job('my_job_id')

  Modifying jobs:修改任务的配置      

job = scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id', max_instances=10)   # 修改任务的属性   job.modify(max_instances=6, name='Alternate name')   # 修改任务的触发器   scheduler.reschedule_job('my_job_id', trigger='cron', minute='*/5')

监控任务事件类型,比较常用的类型有:

  •   EVENT_JOB_ERROR: 表示任务在执行过程的出现异常触发

  •   EVENT_JOB_EXECUTED:任务执行成功时

  •   EVENT_JOB_MAX_INSTANCES:调度器上执行的任务超过配置的参数时      

scheduler.add_listener(job_exception_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)   

总结

感谢各位的阅读,以上就是“Python怎么任务调度APScheduler”的内容了,经过本文的学习后,相信大家对Python怎么任务调度APScheduler这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI