在 Debian 上搭建 PyTorch 开发环境的完整步骤
一 环境准备与基础依赖
二 创建虚拟环境与安装 PyTorch
三 GPU 支持与 CUDA 配置
四 验证安装与最小示例
python3 - <<‘PY’ import torch, torch.nn as nn, torch.nn.functional as F from torch.utils.data import DataLoader from torchvision import datasets, transforms
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) train_ds = datasets.MNIST(root=‘./data’, train=True, download=True, transform=transform) train_loader = DataLoader(train_ds, batch_size=64, shuffle=True)
model = nn.Sequential( nn.Flatten(), nn.Linear(28*28, 128), nn.ReLU(), nn.Linear(128, 10) ) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
model.train() for epoch in range(2): for xb, yb in train_loader: optimizer.zero_grad() pred = model(xb) loss = criterion(pred, yb) loss.backward() optimizer.step() print(“训练完成”) PY
五 IDE 配置与常见问题