在Debian上进行深度学习,首先需要安装PyTorch和其他必要的依赖库。以下是一个详细的步骤指南:
sudo apt update sudo apt install -y build-essential curl git python3-dev python3-pip
export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
pip install torch torchvision torchaudio
或者使用GPU版本(确保CUDA和cuDNN已正确安装):
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
import torch from torchvision import datasets, transforms # 定义数据预处理的转换 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) # 创建数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28*28, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = x.view(-1, 28*28) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1)
import torch.optim as optim model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) for epoch in range(10): # 进行10个周期的训练 for data, target in train_loader: optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step()
model.eval() correct = 0 total = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
以上步骤涵盖了在Debian上安装PyTorch、配置深度学习环境以及进行深度学习项目的基本流程。希望这些信息能帮助您开始在Debian上进行深度学习项目。