在Pandas中,评估分类模型的性能通常需要使用混淆矩阵和一些评估指标。
confusion_matrix = pd.crosstab(y_true, y_pred) from sklearn.metrics import accuracy_score, recall_score, f1_score accuracy = accuracy_score(y_true, y_pred) recall = recall_score(y_true, y_pred) f1 = f1_score(y_true, y_pred) print("Accuracy: ", accuracy) print("Recall: ", recall) print("F1 score: ", f1) from sklearn.metrics import classification_report report = classification_report(y_true, y_pred) print(report) 通过以上方法,可以在Pandas中评估分类模型的性能并获取详细的性能指标。