在Linux环境下使用Python进行爬虫开发时,系统调优是一个重要的环节,可以提高爬虫的性能和效率。以下是一些常见的系统调优方法和技巧:
pip install pypy pip install cython threading模块来并行处理请求。import threading import requests def fetch(url): response = requests.get(url) print(response.text) threads = [] for i in range(10): t = threading.Thread(target=fetch, args=('http://example.com',)) t.start() threads.append(t) for t in threads: t.join() multiprocessing模块来并行处理请求,适合CPU密集型任务。import multiprocessing import requests def fetch(url): response = requests.get(url) print(response.text) processes = [] for i in range(10): p = multiprocessing.Process(target=fetch, args=('http://example.com',)) p.start() processes.append(p) for p in processes: p.join() asyncio库进行异步编程,适合I/O密集型任务。import aiohttp import asyncio async def fetch(url): async with aiohttp.ClientSession() as session: async with session.get(url) as response: return await response.text() async def main(): urls = ['http://example.com'] * 10 tasks = [fetch(url) for url in urls] responses = await asyncio.gather(*tasks) for response in responses: print(response) asyncio.run(main()) import requests proxies = { 'http': 'http://proxy.example.com:8080', 'https': 'http://proxy.example.com:8080', } response = requests.get('http://example.com', proxies=proxies) print(response.text) import requests headers = { 'Accept-Encoding': 'gzip, deflate', } response = requests.get('http://example.com', headers=headers) print(response.text) import mysql.connector db = mysql.connector.connect( host="localhost", user="user", password="password", database="database" ) cursor = db.cursor(pool_name="mypool", pool_size=5) cursor.execute("SELECT * FROM table") result = cursor.fetchall() print(result) import functools @functools.lru_cache(maxsize=128) def expensive_function(arg): # 模拟耗时操作 return arg * 2 通过以上方法,可以有效地对Linux环境下的Python爬虫进行系统调优,提高爬虫的性能和效率。