温馨提示×

Linux环境下C++多线程如何实现同步

小樊
57
2025-07-02 00:37:21
栏目: 编程语言

在Linux环境下,C++多线程实现同步的主要方法有以下几种:

  1. 互斥锁(mutex):互斥锁是一种用于保护共享资源的同步原语。当一个线程访问共享资源时,它需要先锁定互斥锁,其他线程在互斥锁被解锁之前无法访问该资源。C++11提供了std::mutex类来实现互斥锁。

示例代码:

#include <iostream> #include <mutex> #include <thread> std::mutex mtx; void print_block(int n, char c) { mtx.lock(); for (int i = 0; i < n; ++i) { std::cout << c; } std::cout << '\n'; mtx.unlock(); } int main() { std::thread th1(print_block, 50, '*'); std::thread th2(print_block, 50, '$'); th1.join(); th2.join(); return 0; } 
  1. 条件变量(condition variable):条件变量允许线程在某个条件满足时等待,并在条件改变时被唤醒。C++11提供了std::condition_variable类来实现条件变量。

示例代码:

#include <iostream> #include <mutex> #include <condition_variable> #include <thread> std::mutex mtx; std::condition_variable cv; bool ready = false; void print_id(int id) { std::unique_lock<std::mutex> lck(mtx); cv.wait(lck, []{return ready;}); std::cout << "Thread " << id << '\n'; } void go() { std::lock_guard<std::mutex> lck(mtx); ready = true; cv.notify_all(); } int main() { std::thread threads[10]; for (int i = 0; i < 10; ++i) { threads[i] = std::thread(print_id, i); } std::this_thread::sleep_for(std::chrono::seconds(1)); go(); for (auto &th : threads) { th.join(); } return 0; } 
  1. 原子操作(atomic operation):原子操作是一种不可中断的操作,可以确保在多线程环境下对共享变量的访问是安全的。C++11提供了std::atomic模板类来实现原子操作。

示例代码:

#include <iostream> #include <atomic> #include <thread> std::atomic<int> counter(0); void increment_counter() { for (int i = 0; i < 100000; ++i) { counter++; } } int main() { std::thread t1(increment_counter); std::thread t2(increment_counter); t1.join(); t2.join(); std::cout << "Counter: " << counter << '\n'; return 0; } 
  1. 屏障(barrier):屏障是一种同步原语,用于确保多个线程在某个点上等待,直到所有线程都到达该点。C++11没有直接提供屏障,但可以使用std::condition_variablestd::mutex实现。

示例代码:

#include <iostream> #include <mutex> #include <condition_variable> #include <thread> #include <vector> class Barrier { public: explicit Barrier(std::size_t count) : thread_count(count), count(count) {} void wait() { std::unique_lock<std::mutex> lock(mtx); int remaining_threads = --count; if (remaining_threads == 0) { cv.notify_all(); } else { cv.wait(lock, [this]{ return count == 0; }); } } private: std::mutex mtx; std::condition_variable cv; std::size_t thread_count; std::size_t count; }; Barrier barrier(2); void print_hello() { std::cout << "Hello from thread " << std::this_thread::get_id() << '\n'; barrier.wait(); std::cout << "World from thread " << std::this_thread::get_id() << '\n'; } int main() { std::thread t1(print_hello); std::thread t2(print_hello); t1.join(); t2.join(); return 0; } 

这些方法可以帮助你在Linux环境下使用C++实现多线程同步。在实际应用中,你可能需要根据具体需求选择合适的同步方法。

0