在Linux上优化Hadoop任务可以显著提高大数据处理的效率和性能。以下是一些常见的优化策略:
<property> <name>dfs.blocksize</name> <value>256M</value> </property> mapreduce.map.memory.mb和mapreduce.reduce.memory.mb。<property> <name>mapreduce.map.memory.mb</name> <value>4096</value> </property> <property> <name>mapreduce.reduce.memory.mb</name> <value>8192</value> </property> mapreduce.map.java.opts和mapreduce.reduce.java.opts。<property> <name>mapreduce.map.java.opts</name> <value>-Xmx3072m</value> </property> <property> <name>mapreduce.reduce.java.opts</name> <value>-Xmx6144m</value> </property> <property> <name>mapreduce.map.output.compress</name> <value>true</value> </property> <property> <name>mapreduce.map.output.compress.codec</name> <value>org.apache.hadoop.io.compress.SnappyCodec</value> </property> yarn.nodemanager.resource.memory-mb和yarn.nodemanager.resource.cpu-vcores。<property> <name>yarn.nodemanager.resource.memory-mb</name> <value>16384</value> </property> <property> <name>yarn.nodemanager.resource.cpu-vcores</name> <value>8</value> </property> <property> <name>yarn.resourcemanager.scheduler.monitor.enable</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.scheduler.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value> </property> <property> <name>mapreduce.job.locality.wait</name> <value>30000</value> </property> 通过上述优化策略,可以显著提高Hadoop任务在Linux上的执行效率和性能。根据具体的应用场景和硬件资源,选择合适的优化方法。