温馨提示×

CentOS PyTorch如何部署应用

小樊
107
2025-02-14 17:18:01
栏目: 智能运维

在CentOS上部署PyTorch应用通常涉及以下步骤:

  1. 系统更新

    sudo yum update -y 
  2. 安装Python和依赖: DeepSeek大模型通常需要Python 3.7或更高版本。安装Python 3和pip:

    sudo yum install -y python3 python3-pip 
  3. 创建虚拟环境: 建议在虚拟环境中部署,以避免依赖冲突:

    python3 -m venv deepseek-env source deepseek-env/bin/activate 
  4. 安装PyTorch: DeepSeek大模型通常基于PyTorch。根据你的硬件(CPU或GPU)安装合适的PyTorch版本:

    • CPU版本
      pip install torch torchvision torchaudio 
    • GPU版本(需CUDA支持)
      pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 
  5. 安装Transformers库: Hugging Face的Transformers库是常用的模型加载和推理工具:

    pip install transformers 
  6. 下载DeepSeek模型: 从Hugging Face模型库下载DeepSeek模型:

    from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "deepseek-ai/deepseek-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) 
  7. 运行推理: 加载模型后,可以进行推理:

    input_text = "你好,DeepSeek!" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) 
  8. 配置GPU(可选): 如果有GPU,确保CUDA和cuDNN已安装,并配置PyTorch使用GPU:

    import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) 
  9. 部署为服务(可选): 可以使用Flask或FastAPI将模型部署为API服务:

    pip install fastapi uvicorn 

    创建app.py

    from fastapi import FastAPI from transformers import AutoModelForCausalLM, AutoTokenizer import torch app = FastAPI() model_name = "deepseek-ai/deepseek-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) @app.post("/generate") async def generate(text: str): inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs) return {"response": tokenizer.decode(outputs[0], skip_special_tokens=True)} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000) 

    启动服务:

    uvicorn app:app --host 0.0.0.0 --port 8000 
  10. 防火墙配置(可选): 如果需要外部访问API服务,开放端口:

    sudo firewall-cmd --zone=public --add-port=8000/tcp 

以上步骤涵盖了从系统更新到部署服务的全过程,具体操作时请根据实际环境和需求进行调整。

0