在Keras中进行模型微调通常需要以下步骤:
from keras.applications import VGG16 base_model = VGG16(weights='imagenet', include_top=False) from keras.models import Model from keras.layers import Flatten, Dense x = base_model.output x = Flatten()(x) predictions = Dense(num_classes, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) for layer in base_model.layers: layer.trainable = False model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_val, y_val)) for layer in model.layers[:10]: layer.trainable = True model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_val, y_val)) 通过以上步骤,就可以在Keras中进行模型微调。