在Python爬虫开发中,优化代码可以从多个方面进行。以下是一些常见的优化策略:
threading或multiprocessing库来并行处理请求,提高爬虫的抓取速度。asyncio库进行异步IO操作,减少等待时间。requests库的Session对象)来复用连接,减少建立和关闭连接的开销。try-except块捕获和处理异常,确保爬虫的稳定性。以下是一个简单的爬虫示例,展示了上述优化策略的应用:
import requests from bs4 import BeautifulSoup import asyncio import aiohttp import time class WebScraper: def __init__(self, proxies=None): self.session = requests.Session() if proxies: self.session.proxies = proxies self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} async def fetch(self, url): async with aiohttp.ClientSession() as session: async with session.get(url, headers=self.headers) as response: return await response.text() def parse(self, html): soup = BeautifulSoup(html, 'html.parser') # 解析逻辑 return parsed_data async def run(self, urls): tasks = [self.fetch(url) for url in urls] htmls = await asyncio.gather(*tasks) for html in htmls: data = self.parse(html) # 存储数据 self.save_data(data) time.sleep(1) # 设置请求间隔 def save_data(self, data): # 存储数据到数据库或文件 pass if __name__ == "__main__": proxies = { 'http': 'http://proxy.example.com:8080', 'https': 'http://proxy.example.com:8080' } scraper = WebScraper(proxies=proxies) urls = [ 'http://example.com/page1', 'http://example.com/page2' ] asyncio.run(scraper.run(urls)) 通过模块化设计、多线程/多进程、异步IO、连接池、代码简洁性优化、反爬虫策略优化、数据存储优化以及错误处理和日志记录等手段,可以显著提高Python爬虫的性能和稳定性。